Cargando…
SD(2): spatially resolved transcriptomics deconvolution through integration of dropout and spatial information
MOTIVATION: Unveiling the heterogeneity in the tissues is crucial to explore cell–cell interactions and cellular targets of human diseases. Spatial transcriptomics (ST) supplies spatial gene expression profile which has revolutionized our biological understanding, but variations in cell-type proport...
Autores principales: | Li, Haoyang, Li, Hanmin, Zhou, Juexiao, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789790/ https://www.ncbi.nlm.nih.gov/pubmed/36063455 http://dx.doi.org/10.1093/bioinformatics/btac605 |
Ejemplares similares
-
A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics
por: Li, Haoyang, et al.
Publicado: (2023) -
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023) -
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
Benchmarking and integration of methods for deconvoluting spatial transcriptomic data
por: Yan, Lulu, et al.
Publicado: (2022) -
Spatially resolved deconvolution of the fibrotic niche in lung fibrosis
por: Eyres, Michael, et al.
Publicado: (2022)