Cargando…
Distance covariance entropy reveals primed states and bifurcation dynamics in single-cell RNA-Seq data
Cell-fate transitions are fundamental to development and differentiation. Studying them with single-cell omic data is important to advance our understanding of the cell-fate commitment process, yet this remains challenging. Here we present a computational method called DICE, which analyzes the entro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791356/ https://www.ncbi.nlm.nih.gov/pubmed/36578319 http://dx.doi.org/10.1016/j.isci.2022.105709 |
Sumario: | Cell-fate transitions are fundamental to development and differentiation. Studying them with single-cell omic data is important to advance our understanding of the cell-fate commitment process, yet this remains challenging. Here we present a computational method called DICE, which analyzes the entropy of expression covariation patterns and which is applicable to static and dynamically changing cell populations. Using only single-cell RNA-Seq data, DICE is able to predict multipotent primed states and their regulatory factors, which we subsequently validate with single-cell epigenomic data. DICE reveals that primed states are often defined by epigenetic regulators or pioneer factors alongside lineage-specific transcription factors. In developmental time course single-cell RNA-Seq datasets, DICE can pinpoint the timing of bifurcations more precisely than lineage-trajectory inference algorithms or competing variance-based methods. In summary, by studying the dynamic changes of expression covariation entropy, DICE can help elucidate primed states and bifurcation dynamics without the need for single-cell epigenomic data. |
---|