Cargando…
Distance covariance entropy reveals primed states and bifurcation dynamics in single-cell RNA-Seq data
Cell-fate transitions are fundamental to development and differentiation. Studying them with single-cell omic data is important to advance our understanding of the cell-fate commitment process, yet this remains challenging. Here we present a computational method called DICE, which analyzes the entro...
Autores principales: | Luo, Qi, Maity, Alok K., Teschendorff, Andrew E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791356/ https://www.ncbi.nlm.nih.gov/pubmed/36578319 http://dx.doi.org/10.1016/j.isci.2022.105709 |
Ejemplares similares
-
Cell-attribute aware community detection improves differential abundance testing from single-cell RNA-Seq data
por: Maity, Alok K., et al.
Publicado: (2023) -
Ultra-fast scalable estimation of single-cell differentiation potency from scRNA-Seq data
por: Teschendorff, Andrew E, et al.
Publicado: (2020) -
The Dynamics of DNA Methylation Covariation Patterns in Carcinogenesis
por: Teschendorff, Andrew E., et al.
Publicado: (2014) -
Differential network entropy reveals cancer system hallmarks
por: West, James, et al.
Publicado: (2012) -
Covariance Representations and Coherent Measures for Some Entropies
por: Zuo, Baishuai, et al.
Publicado: (2023)