Cargando…
Experimental evidence of a limited impact of new-generation perfluoroalkyl substance C6O4 on differentiating human dopaminergic neurons from induced pluripotent stem cells
Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). In vitro exposure to 10 ng/mL PFOA fo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791692/ https://www.ncbi.nlm.nih.gov/pubmed/36578672 http://dx.doi.org/10.1016/j.toxrep.2022.12.006 |
Sumario: | Perfluoroalkyl substances (PFASs) are persistent pollutants, raising concerns for human health. Legacy PFAS perfluoro-octanoic acid (PFOA) accumulate in brains of people at high environmental exposure, especially in areas enriched with dopaminergic neurons (DN). In vitro exposure to 10 ng/mL PFOA for 24 h was also associated with an altered molecular and functional phenotype of DN differentiated from human induced pluripotent stem cells (hiPSCs). Acetic acid, 2,2-difluoro-2-((2,2,4,5-tetrafluoro-5(trifluoromethoxy)− 1,3-dioxolan-4-yl)oxy)-ammonium salt (1:1), known as C6O4, is a new generation PFAS proposed to have a safer profile. Here we investigated the effect of C6O4 exposure on the molecular phenotype of hiPSC-derived DN. Cells were exposed to C6O4 for 24 h, at the concentration of 10 ng/mL, at neuronal commitment (DP1), neuronal precursor (DP2) and the mature dopaminergic (DP3) phases of differentiation. Liquid-chromatography/mass-spectrometry showed negligible cell accumulation of C6O4 at each differentiation stage and by staining with Merocyanine-540 we observed unaltered cell membrane fluidity. Immunofluorescence showed that the expression of tyrosine hydroxylase (TH) and βIII-Tubulin was unaffected by the exposure to C6O4 at each differentiation phase (respectively: DP1, p = 0.332; DP2, p = 0.623; DP3, p = 0.816, with respect to control unexposed conditions). Exposure to C6O4 is presumed to have minor effects on cell molecular/functional phenotype of developing human DN cells, requiring confirm on in vivo models. |
---|