Cargando…
RANKL neutralisation prevents osteoclast activation in a human in vitro ameloblastoma-bone model
Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793035/ https://www.ncbi.nlm.nih.gov/pubmed/36582941 http://dx.doi.org/10.1177/20417314221140500 |
_version_ | 1784859767619977216 |
---|---|
author | Pape, Judith Bakkalci, Deniz Hosni, Rawiya Al Simpson, Benjamin S Heikinheimo, Kristiina Fedele, Stefano Cheema, Umber |
author_facet | Pape, Judith Bakkalci, Deniz Hosni, Rawiya Al Simpson, Benjamin S Heikinheimo, Kristiina Fedele, Stefano Cheema, Umber |
author_sort | Pape, Judith |
collection | PubMed |
description | Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, osteoblasts and activated osteoclasts to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab. In vitro bone was engineered by culturing human osteoblasts (hOB) in a biomimetic, dense collagen type I matrix, resulting in extensive mineral deposits by day 21 forming alizarin red positive bone like nodules throughout the 3D model. Activated TRAP + human osteoclasts were confirmed through the differentiation of human CD14+ monocytes after 10 days within the model. Lastly, the ameloblastoma cell lines AM-1 and AM-3 were incorporated into the 3D model. RANKL release was validated through TACE/ADAM17 activation chemically or through hOB co-culture. Denosumab treatment resulted in decreased osteoclast activation in the presence of hOB and ameloblastoma cells. These findings stress the importance of accurately modelling tumour and stromal populations as a preclinical testing platform. |
format | Online Article Text |
id | pubmed-9793035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-97930352022-12-28 RANKL neutralisation prevents osteoclast activation in a human in vitro ameloblastoma-bone model Pape, Judith Bakkalci, Deniz Hosni, Rawiya Al Simpson, Benjamin S Heikinheimo, Kristiina Fedele, Stefano Cheema, Umber J Tissue Eng Original Article Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, osteoblasts and activated osteoclasts to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab. In vitro bone was engineered by culturing human osteoblasts (hOB) in a biomimetic, dense collagen type I matrix, resulting in extensive mineral deposits by day 21 forming alizarin red positive bone like nodules throughout the 3D model. Activated TRAP + human osteoclasts were confirmed through the differentiation of human CD14+ monocytes after 10 days within the model. Lastly, the ameloblastoma cell lines AM-1 and AM-3 were incorporated into the 3D model. RANKL release was validated through TACE/ADAM17 activation chemically or through hOB co-culture. Denosumab treatment resulted in decreased osteoclast activation in the presence of hOB and ameloblastoma cells. These findings stress the importance of accurately modelling tumour and stromal populations as a preclinical testing platform. SAGE Publications 2022-12-24 /pmc/articles/PMC9793035/ /pubmed/36582941 http://dx.doi.org/10.1177/20417314221140500 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Article Pape, Judith Bakkalci, Deniz Hosni, Rawiya Al Simpson, Benjamin S Heikinheimo, Kristiina Fedele, Stefano Cheema, Umber RANKL neutralisation prevents osteoclast activation in a human in vitro ameloblastoma-bone model |
title | RANKL neutralisation prevents osteoclast activation in a human
in vitro ameloblastoma-bone model |
title_full | RANKL neutralisation prevents osteoclast activation in a human
in vitro ameloblastoma-bone model |
title_fullStr | RANKL neutralisation prevents osteoclast activation in a human
in vitro ameloblastoma-bone model |
title_full_unstemmed | RANKL neutralisation prevents osteoclast activation in a human
in vitro ameloblastoma-bone model |
title_short | RANKL neutralisation prevents osteoclast activation in a human
in vitro ameloblastoma-bone model |
title_sort | rankl neutralisation prevents osteoclast activation in a human
in vitro ameloblastoma-bone model |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793035/ https://www.ncbi.nlm.nih.gov/pubmed/36582941 http://dx.doi.org/10.1177/20417314221140500 |
work_keys_str_mv | AT papejudith ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel AT bakkalcideniz ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel AT hosnirawiyaal ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel AT simpsonbenjamins ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel AT heikinheimokristiina ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel AT fedelestefano ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel AT cheemaumber ranklneutralisationpreventsosteoclastactivationinahumaninvitroameloblastomabonemodel |