Cargando…

NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity

A major question in systems biology is how to identify the core gene regulatory circuit that governs the decision-making of a biological process. Here, we develop a computational platform, named NetAct, for constructing core transcription factor regulatory networks using both transcriptomics data an...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Kenong, Katebi, Ataur, Kohar, Vivek, Clauss, Benjamin, Gordin, Danya, Qin, Zhaohui S., Karuturi, R. Krishna M., Li, Sheng, Lu, Mingyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793520/
https://www.ncbi.nlm.nih.gov/pubmed/36575445
http://dx.doi.org/10.1186/s13059-022-02835-3
_version_ 1784859860507033600
author Su, Kenong
Katebi, Ataur
Kohar, Vivek
Clauss, Benjamin
Gordin, Danya
Qin, Zhaohui S.
Karuturi, R. Krishna M.
Li, Sheng
Lu, Mingyang
author_facet Su, Kenong
Katebi, Ataur
Kohar, Vivek
Clauss, Benjamin
Gordin, Danya
Qin, Zhaohui S.
Karuturi, R. Krishna M.
Li, Sheng
Lu, Mingyang
author_sort Su, Kenong
collection PubMed
description A major question in systems biology is how to identify the core gene regulatory circuit that governs the decision-making of a biological process. Here, we develop a computational platform, named NetAct, for constructing core transcription factor regulatory networks using both transcriptomics data and literature-based transcription factor-target databases. NetAct robustly infers regulators’ activity using target expression, constructs networks based on transcriptional activity, and integrates mathematical modeling for validation. Our in silico benchmark test shows that NetAct outperforms existing algorithms in inferring transcriptional activity and gene networks. We illustrate the application of NetAct to model networks driving TGF-β-induced epithelial-mesenchymal transition and macrophage polarization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02835-3.
format Online
Article
Text
id pubmed-9793520
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-97935202022-12-28 NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity Su, Kenong Katebi, Ataur Kohar, Vivek Clauss, Benjamin Gordin, Danya Qin, Zhaohui S. Karuturi, R. Krishna M. Li, Sheng Lu, Mingyang Genome Biol Method A major question in systems biology is how to identify the core gene regulatory circuit that governs the decision-making of a biological process. Here, we develop a computational platform, named NetAct, for constructing core transcription factor regulatory networks using both transcriptomics data and literature-based transcription factor-target databases. NetAct robustly infers regulators’ activity using target expression, constructs networks based on transcriptional activity, and integrates mathematical modeling for validation. Our in silico benchmark test shows that NetAct outperforms existing algorithms in inferring transcriptional activity and gene networks. We illustrate the application of NetAct to model networks driving TGF-β-induced epithelial-mesenchymal transition and macrophage polarization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02835-3. BioMed Central 2022-12-27 /pmc/articles/PMC9793520/ /pubmed/36575445 http://dx.doi.org/10.1186/s13059-022-02835-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Su, Kenong
Katebi, Ataur
Kohar, Vivek
Clauss, Benjamin
Gordin, Danya
Qin, Zhaohui S.
Karuturi, R. Krishna M.
Li, Sheng
Lu, Mingyang
NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity
title NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity
title_full NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity
title_fullStr NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity
title_full_unstemmed NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity
title_short NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity
title_sort netact: a computational platform to construct core transcription factor regulatory networks using gene activity
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793520/
https://www.ncbi.nlm.nih.gov/pubmed/36575445
http://dx.doi.org/10.1186/s13059-022-02835-3
work_keys_str_mv AT sukenong netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT katebiataur netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT koharvivek netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT claussbenjamin netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT gordindanya netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT qinzhaohuis netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT karuturirkrishnam netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT lisheng netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity
AT lumingyang netactacomputationalplatformtoconstructcoretranscriptionfactorregulatorynetworksusinggeneactivity