Cargando…
Biology-inspired data-driven quality control for scientific discovery in single-cell transcriptomics
BACKGROUND: Quality control (QC) of cells, a critical first step in single-cell RNA sequencing data analysis, has largely relied on arbitrarily fixed data-agnostic thresholds applied to QC metrics such as gene complexity and fraction of reads mapping to mitochondrial genes. The few existing data-dri...
Autores principales: | Subramanian, Ayshwarya, Alperovich, Mikhail, Yang, Yiming, Li, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793662/ https://www.ncbi.nlm.nih.gov/pubmed/36575523 http://dx.doi.org/10.1186/s13059-022-02820-w |
Ejemplares similares
-
Reference-free inference of tumor phylogenies from single-cell sequencing data
por: Subramanian, Ayshwarya, et al.
Publicado: (2015) -
Erratum to: ‘Reference-free inference of tumor phylogenies from single-cell sequencing data’
por: Subramanian, Ayshwarya, et al.
Publicado: (2016) -
Accelerating scientific discoveries through data-driven innovations
por: Alexander, Francis J., et al.
Publicado: (2023) -
A practical guide to methods controlling false discoveries in computational biology
por: Korthauer, Keegan, et al.
Publicado: (2019) -
Deep Learning Approach Based on Transcriptome Profile for Data Driven Drug Discovery
por: Kwon, Eun-Ji, et al.
Publicado: (2023)