Cargando…
A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity
The bioactive sphingolipid ceramide impacts diverse cellular processes (e.g. apoptosis and cell proliferation) through its effects on membrane dynamics and intracellular signaling pathways. The dysregulation of ceramide metabolism has been implicated in cancer evasion of apoptosis and targeting cera...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793866/ https://www.ncbi.nlm.nih.gov/pubmed/36409314 http://dx.doi.org/10.1242/bio.059695 |
_version_ | 1784859921945198592 |
---|---|
author | Morris, Siti Nur Sarah Deol, Kirandeep K. Lange, Mike Olzmann, James A. |
author_facet | Morris, Siti Nur Sarah Deol, Kirandeep K. Lange, Mike Olzmann, James A. |
author_sort | Morris, Siti Nur Sarah |
collection | PubMed |
description | The bioactive sphingolipid ceramide impacts diverse cellular processes (e.g. apoptosis and cell proliferation) through its effects on membrane dynamics and intracellular signaling pathways. The dysregulation of ceramide metabolism has been implicated in cancer evasion of apoptosis and targeting ceramide metabolism has potential therapeutic benefits as a strategy to kill cancer cells and slow tumor growth. However, the mechanisms of cancer cell resistance to ceramide-mediated cell death are vastly intertwined and incompletely understood. To shed light on this mystery, we performed a genome-wide CRISPR-Cas9 screen to systematically identify regulators of cancer resistance to the soluble short chain ceramide, C6 ceramide (C6-Cer). Our results reveal a complex landscape of genetic modifiers of C6-Cer toxicity, including genes associated with ceramide and sphingolipid metabolism, vesicular trafficking, and membrane biology. Furthermore, we find that loss of the phospholipid flippase subunit TMEM30A impairs the plasma membrane trafficking of its binding partner, the P4-type ATPase ATP11B, and depletion of TMEM30A or ATP11B disrupts plasma membrane asymmetry and promotes resistance to C6-Cer toxicity. Together, our findings provide a resource of genetic modifiers of C6-Cer toxicity and reveal an unexpected role of plasma membrane asymmetry in C6-Cer induced cell death. |
format | Online Article Text |
id | pubmed-9793866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-97938662022-12-28 A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity Morris, Siti Nur Sarah Deol, Kirandeep K. Lange, Mike Olzmann, James A. Biol Open Research Article The bioactive sphingolipid ceramide impacts diverse cellular processes (e.g. apoptosis and cell proliferation) through its effects on membrane dynamics and intracellular signaling pathways. The dysregulation of ceramide metabolism has been implicated in cancer evasion of apoptosis and targeting ceramide metabolism has potential therapeutic benefits as a strategy to kill cancer cells and slow tumor growth. However, the mechanisms of cancer cell resistance to ceramide-mediated cell death are vastly intertwined and incompletely understood. To shed light on this mystery, we performed a genome-wide CRISPR-Cas9 screen to systematically identify regulators of cancer resistance to the soluble short chain ceramide, C6 ceramide (C6-Cer). Our results reveal a complex landscape of genetic modifiers of C6-Cer toxicity, including genes associated with ceramide and sphingolipid metabolism, vesicular trafficking, and membrane biology. Furthermore, we find that loss of the phospholipid flippase subunit TMEM30A impairs the plasma membrane trafficking of its binding partner, the P4-type ATPase ATP11B, and depletion of TMEM30A or ATP11B disrupts plasma membrane asymmetry and promotes resistance to C6-Cer toxicity. Together, our findings provide a resource of genetic modifiers of C6-Cer toxicity and reveal an unexpected role of plasma membrane asymmetry in C6-Cer induced cell death. The Company of Biologists Ltd 2022-12-19 /pmc/articles/PMC9793866/ /pubmed/36409314 http://dx.doi.org/10.1242/bio.059695 Text en © 2022. Published by The Company of Biologists Ltd https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Morris, Siti Nur Sarah Deol, Kirandeep K. Lange, Mike Olzmann, James A. A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity |
title | A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity |
title_full | A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity |
title_fullStr | A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity |
title_full_unstemmed | A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity |
title_short | A genome-wide CRISPR screen implicates plasma membrane asymmetry in exogenous C6-ceramide toxicity |
title_sort | genome-wide crispr screen implicates plasma membrane asymmetry in exogenous c6-ceramide toxicity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793866/ https://www.ncbi.nlm.nih.gov/pubmed/36409314 http://dx.doi.org/10.1242/bio.059695 |
work_keys_str_mv | AT morrissitinursarah agenomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT deolkirandeepk agenomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT langemike agenomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT olzmannjamesa agenomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT morrissitinursarah genomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT deolkirandeepk genomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT langemike genomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity AT olzmannjamesa genomewidecrisprscreenimplicatesplasmamembraneasymmetryinexogenousc6ceramidetoxicity |