Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules

Glass/glass (G/G) photovoltaic modules are quickly rising in popularity, but the durability of modern G/G packaging has not yet been established. In this work, we examine the interfacial degradation modes in G/G and glass/transparent backsheet modules under damp heat (DH) with and without system bia...

Descripción completa

Detalles Bibliográficos
Autores principales: Spinella, Laura, Uličná, Soňa, Sinha, Archana, Sulas‐Kern, Dana B., Owen‐Bellini, Michael, Johnston, Steve, Schelhas, Laura T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796659/
https://www.ncbi.nlm.nih.gov/pubmed/36620762
http://dx.doi.org/10.1002/pip.3602
_version_ 1784860536940265472
author Spinella, Laura
Uličná, Soňa
Sinha, Archana
Sulas‐Kern, Dana B.
Owen‐Bellini, Michael
Johnston, Steve
Schelhas, Laura T.
author_facet Spinella, Laura
Uličná, Soňa
Sinha, Archana
Sulas‐Kern, Dana B.
Owen‐Bellini, Michael
Johnston, Steve
Schelhas, Laura T.
author_sort Spinella, Laura
collection PubMed
description Glass/glass (G/G) photovoltaic modules are quickly rising in popularity, but the durability of modern G/G packaging has not yet been established. In this work, we examine the interfacial degradation modes in G/G and glass/transparent backsheet modules under damp heat (DH) with and without system bias voltage, comparing emerging polyolefin elastomer (POE) and industry‐standard poly(ethylene‐co‐vinyl acetate) (EVA) encapsulants. We investigate the transport of ionic species at cell/encapsulant interfaces, demonstrating that POE limits both sodium and silver ion migration compared with EVA. Changes to the chemical structures of the encapsulants at the cell/encapsulant interfaces demonstrate that both POE and EVA are more susceptible to degradation in modules with a transparent backsheet than in the G/G configuration. Adhesion testing reveals that POE and EVA have comparable critical debond energies after the DH exposures regardless of system bias polarity. The results of this study indicate that the interfacial degradation mechanisms of G/G appear to be similar to those of conventional glass/backsheet modules. For emerging materials, our results demonstrate that POE offers advantages over EVA but that transparent backsheets may accelerate encapsulant degradation due to increased moisture ingress when compared with the G/G structure.
format Online
Article
Text
id pubmed-9796659
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97966592023-01-04 Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules Spinella, Laura Uličná, Soňa Sinha, Archana Sulas‐Kern, Dana B. Owen‐Bellini, Michael Johnston, Steve Schelhas, Laura T. Prog Photovolt Research Articles Glass/glass (G/G) photovoltaic modules are quickly rising in popularity, but the durability of modern G/G packaging has not yet been established. In this work, we examine the interfacial degradation modes in G/G and glass/transparent backsheet modules under damp heat (DH) with and without system bias voltage, comparing emerging polyolefin elastomer (POE) and industry‐standard poly(ethylene‐co‐vinyl acetate) (EVA) encapsulants. We investigate the transport of ionic species at cell/encapsulant interfaces, demonstrating that POE limits both sodium and silver ion migration compared with EVA. Changes to the chemical structures of the encapsulants at the cell/encapsulant interfaces demonstrate that both POE and EVA are more susceptible to degradation in modules with a transparent backsheet than in the G/G configuration. Adhesion testing reveals that POE and EVA have comparable critical debond energies after the DH exposures regardless of system bias polarity. The results of this study indicate that the interfacial degradation mechanisms of G/G appear to be similar to those of conventional glass/backsheet modules. For emerging materials, our results demonstrate that POE offers advantages over EVA but that transparent backsheets may accelerate encapsulant degradation due to increased moisture ingress when compared with the G/G structure. John Wiley and Sons Inc. 2022-06-29 2022-12 /pmc/articles/PMC9796659/ /pubmed/36620762 http://dx.doi.org/10.1002/pip.3602 Text en © 2022 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Spinella, Laura
Uličná, Soňa
Sinha, Archana
Sulas‐Kern, Dana B.
Owen‐Bellini, Michael
Johnston, Steve
Schelhas, Laura T.
Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
title Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
title_full Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
title_fullStr Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
title_full_unstemmed Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
title_short Chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
title_sort chemical and mechanical interfacial degradation in bifacial glass/glass and glass/transparent backsheet photovoltaic modules
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9796659/
https://www.ncbi.nlm.nih.gov/pubmed/36620762
http://dx.doi.org/10.1002/pip.3602
work_keys_str_mv AT spinellalaura chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules
AT ulicnasona chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules
AT sinhaarchana chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules
AT sulaskerndanab chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules
AT owenbellinimichael chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules
AT johnstonsteve chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules
AT schelhaslaurat chemicalandmechanicalinterfacialdegradationinbifacialglassglassandglasstransparentbacksheetphotovoltaicmodules