Cargando…
Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, sta...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798078/ https://www.ncbi.nlm.nih.gov/pubmed/36516847 http://dx.doi.org/10.1016/j.xcrm.2022.100872 |
_version_ | 1784860828326952960 |
---|---|
author | Lazard, Tristan Bataillon, Guillaume Naylor, Peter Popova, Tatiana Bidard, François-Clément Stoppa-Lyonnet, Dominique Stern, Marc-Henri Decencière, Etienne Walter, Thomas Vincent-Salomon, Anne |
author_facet | Lazard, Tristan Bataillon, Guillaume Naylor, Peter Popova, Tatiana Bidard, François-Clément Stoppa-Lyonnet, Dominique Stern, Marc-Henri Decencière, Etienne Walter, Thomas Vincent-Salomon, Anne |
author_sort | Lazard, Tristan |
collection | PubMed |
description | Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first show that digital pathology workflows are sensitive to potential biases in the training set, then we propose a method to overcome the influence of these biases, and we develop an interpretation method capable of identifying complex phenotypes. Application to our carefully curated in-house dataset allows us to predict HRD with high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morphological phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open new hypotheses regarding its phenotypic impact. |
format | Online Article Text |
id | pubmed-9798078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97980782022-12-30 Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images Lazard, Tristan Bataillon, Guillaume Naylor, Peter Popova, Tatiana Bidard, François-Clément Stoppa-Lyonnet, Dominique Stern, Marc-Henri Decencière, Etienne Walter, Thomas Vincent-Salomon, Anne Cell Rep Med Article Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first show that digital pathology workflows are sensitive to potential biases in the training set, then we propose a method to overcome the influence of these biases, and we develop an interpretation method capable of identifying complex phenotypes. Application to our carefully curated in-house dataset allows us to predict HRD with high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morphological phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open new hypotheses regarding its phenotypic impact. Elsevier 2022-12-13 /pmc/articles/PMC9798078/ /pubmed/36516847 http://dx.doi.org/10.1016/j.xcrm.2022.100872 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lazard, Tristan Bataillon, Guillaume Naylor, Peter Popova, Tatiana Bidard, François-Clément Stoppa-Lyonnet, Dominique Stern, Marc-Henri Decencière, Etienne Walter, Thomas Vincent-Salomon, Anne Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
title | Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
title_full | Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
title_fullStr | Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
title_full_unstemmed | Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
title_short | Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
title_sort | deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798078/ https://www.ncbi.nlm.nih.gov/pubmed/36516847 http://dx.doi.org/10.1016/j.xcrm.2022.100872 |
work_keys_str_mv | AT lazardtristan deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT bataillonguillaume deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT naylorpeter deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT popovatatiana deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT bidardfrancoisclement deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT stoppalyonnetdominique deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT sternmarchenri deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT decenciereetienne deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT walterthomas deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages AT vincentsalomonanne deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages |