Cargando…

Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images

Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, sta...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazard, Tristan, Bataillon, Guillaume, Naylor, Peter, Popova, Tatiana, Bidard, François-Clément, Stoppa-Lyonnet, Dominique, Stern, Marc-Henri, Decencière, Etienne, Walter, Thomas, Vincent-Salomon, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798078/
https://www.ncbi.nlm.nih.gov/pubmed/36516847
http://dx.doi.org/10.1016/j.xcrm.2022.100872
_version_ 1784860828326952960
author Lazard, Tristan
Bataillon, Guillaume
Naylor, Peter
Popova, Tatiana
Bidard, François-Clément
Stoppa-Lyonnet, Dominique
Stern, Marc-Henri
Decencière, Etienne
Walter, Thomas
Vincent-Salomon, Anne
author_facet Lazard, Tristan
Bataillon, Guillaume
Naylor, Peter
Popova, Tatiana
Bidard, François-Clément
Stoppa-Lyonnet, Dominique
Stern, Marc-Henri
Decencière, Etienne
Walter, Thomas
Vincent-Salomon, Anne
author_sort Lazard, Tristan
collection PubMed
description Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first show that digital pathology workflows are sensitive to potential biases in the training set, then we propose a method to overcome the influence of these biases, and we develop an interpretation method capable of identifying complex phenotypes. Application to our carefully curated in-house dataset allows us to predict HRD with high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morphological phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open new hypotheses regarding its phenotypic impact.
format Online
Article
Text
id pubmed-9798078
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97980782022-12-30 Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images Lazard, Tristan Bataillon, Guillaume Naylor, Peter Popova, Tatiana Bidard, François-Clément Stoppa-Lyonnet, Dominique Stern, Marc-Henri Decencière, Etienne Walter, Thomas Vincent-Salomon, Anne Cell Rep Med Article Homologous recombination DNA-repair deficiency (HRD) is becoming a well-recognized marker of platinum salt and polyADP-ribose polymerase inhibitor chemotherapies in ovarian and breast cancers. While large-scale screening for HRD using genomic markers is logistically and economically challenging, stained tissue slides are routinely acquired in clinical practice. With the objectives of providing a robust deep-learning method for HRD prediction from tissue slides and identifying related morphological phenotypes, we first show that digital pathology workflows are sensitive to potential biases in the training set, then we propose a method to overcome the influence of these biases, and we develop an interpretation method capable of identifying complex phenotypes. Application to our carefully curated in-house dataset allows us to predict HRD with high accuracy (area under the receiver-operator characteristics curve 0.86) and to identify morphological phenotypes related to HRD. In particular, the presence of laminated fibrosis and clear tumor cells associated with HRD open new hypotheses regarding its phenotypic impact. Elsevier 2022-12-13 /pmc/articles/PMC9798078/ /pubmed/36516847 http://dx.doi.org/10.1016/j.xcrm.2022.100872 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Lazard, Tristan
Bataillon, Guillaume
Naylor, Peter
Popova, Tatiana
Bidard, François-Clément
Stoppa-Lyonnet, Dominique
Stern, Marc-Henri
Decencière, Etienne
Walter, Thomas
Vincent-Salomon, Anne
Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
title Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
title_full Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
title_fullStr Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
title_full_unstemmed Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
title_short Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
title_sort deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798078/
https://www.ncbi.nlm.nih.gov/pubmed/36516847
http://dx.doi.org/10.1016/j.xcrm.2022.100872
work_keys_str_mv AT lazardtristan deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT bataillonguillaume deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT naylorpeter deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT popovatatiana deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT bidardfrancoisclement deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT stoppalyonnetdominique deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT sternmarchenri deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT decenciereetienne deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT walterthomas deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages
AT vincentsalomonanne deeplearningidentifiesmorphologicalpatternsofhomologousrecombinationdeficiencyinluminalbreastcancersfromwholeslideimages