Cargando…
Systematic comparison of modeling fidelity levels and parameter inference settings applied to negative feedback gene regulation
Quantitative stochastic models of gene regulatory networks are important tools for studying cellular regulation. Such models can be formulated at many different levels of fidelity. A practical challenge is to determine what model fidelity to use in order to get accurate and representative results. T...
Autores principales: | Coulier, Adrien, Singh, Prashant, Sturrock, Marc, Hellander, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799300/ https://www.ncbi.nlm.nih.gov/pubmed/36520957 http://dx.doi.org/10.1371/journal.pcbi.1010683 |
Ejemplares similares
-
A multiscale compartment-based model of stochastic gene regulatory networks using hitting-time analysis
por: Coulier, Adrien, et al.
Publicado: (2021) -
CBMOS: a GPU-enabled Python framework for the numerical study of center-based models
por: Mathias, Sonja, et al.
Publicado: (2022) -
Impact of Force Function Formulations on the Numerical Simulation of Centre-Based Models
por: Mathias, Sonja, et al.
Publicado: (2020) -
Scalable machine learning-assisted model exploration and inference using Sciope
por: Singh, Prashant, et al.
Publicado: (2020) -
Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation
por: Sturrock, Marc, et al.
Publicado: (2013)