Cargando…
Depletion of HIV reservoir by activation of ISR signaling in resting CD4(+) T cells
HIV reservoirs are extremely stable and pose a tremendous challenge to clear HIV infection. Here, we demonstrate that activation of ISR/ATF4 signaling reverses HIV latency, which also selectively eliminates HIV+ cells in primary CD4(+) T cell model of latency without effect on HIV-negative CD4(+) T...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800255/ https://www.ncbi.nlm.nih.gov/pubmed/36590168 http://dx.doi.org/10.1016/j.isci.2022.105743 |
Sumario: | HIV reservoirs are extremely stable and pose a tremendous challenge to clear HIV infection. Here, we demonstrate that activation of ISR/ATF4 signaling reverses HIV latency, which also selectively eliminates HIV+ cells in primary CD4(+) T cell model of latency without effect on HIV-negative CD4(+) T cells. The reduction of HIV+ cells is associated with apoptosis enhancement, but surprisingly is largely seen in HIV-infected cells in which gag-pol RNA transcripts are detected in HIV RNA-induced ATF4/IFIT signaling. In resting CD4(+) (rCD4(+)) T cells isolated from people living with HIV on antiretroviral therapy, induction of ISR/ATF4 signaling reduced HIV reservoirs by depletion of replication-competent HIV without global reduction in the rCD4(+) T cell population. These findings suggest that compromised ISR/ATF4 signaling maintains stable and quiescent HIV reservoirs whereas activation of ISR/ATF4 signaling results in the disruption of latent HIV and clearance of persistently infected CD4(+) T cells. |
---|