Cargando…
Machine learning methods for protein-protein binding affinity prediction in protein design
Protein-protein interactions govern a wide range of biological activity. A proper estimation of the protein-protein binding affinity is vital to design proteins with high specificity and binding affinity toward a target protein, which has a variety of applications including antibody design in immuno...
Autores principales: | Guo, Zhongliang, Yamaguchi, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800603/ https://www.ncbi.nlm.nih.gov/pubmed/36591334 http://dx.doi.org/10.3389/fbinf.2022.1065703 |
Ejemplares similares
-
DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity
por: Zhang, Haiping, et al.
Publicado: (2019) -
Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review
por: Meli, Rocco, et al.
Publicado: (2022) -
Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae
por: Zubek, Julian, et al.
Publicado: (2015) -
A novel machine learning derived RNA-binding protein gene–based score system predicts prognosis of hepatocellular carcinoma patients
por: Zhang, Qiangnu, et al.
Publicado: (2021) -
An in silico study of how histone tail conformation affects the binding affinity of ING family proteins
por: Gül, Nadir, et al.
Publicado: (2022)