Cargando…
Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers
INTRODUCTION: Despite advancements in molecular and histopathologic characterization of pediatric low-grade gliomas (pLGGs), there remains significant phenotypic heterogeneity among tumors with similar categorizations. We hypothesized that an unsupervised machine learning approach based on radiomic...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803939/ https://www.ncbi.nlm.nih.gov/pubmed/36566592 http://dx.doi.org/10.1016/j.neo.2022.100869 |