Cargando…
Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers
INTRODUCTION: Despite advancements in molecular and histopathologic characterization of pediatric low-grade gliomas (pLGGs), there remains significant phenotypic heterogeneity among tumors with similar categorizations. We hypothesized that an unsupervised machine learning approach based on radiomic...
Autores principales: | Haldar, Debanjan, Kazerooni, Anahita Fathi, Arif, Sherjeel, Familiar, Ariana, Madhogarhia, Rachel, Khalili, Nastaran, Bagheri, Sina, Anderson, Hannah, Shaikh, Ibraheem Salman, Mahtabfar, Aria, Kim, Meen Chul, Tu, Wenxin, Ware, Jefferey, Vossough, Arastoo, Davatzikos, Christos, Storm, Phillip B., Resnick, Adam, Nabavizadeh, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803939/ https://www.ncbi.nlm.nih.gov/pubmed/36566592 http://dx.doi.org/10.1016/j.neo.2022.100869 |
Ejemplares similares
-
IMG-05. A MULTI-INSTITUTIONAL AND MULTI-HISTOLOGY PEDIATRIC-SPECIFIC BRAIN TUMOR SUBREGION SEGMENTATION TOOL: FACILITATING RAPNO-BASED ASSESSMENT OF TREATMENT RESPONSE
por: Kazerooni, Anahita Fathi, et al.
Publicado: (2023) -
Radiomics and radiogenomics in pediatric neuro-oncology: A review
por: Madhogarhia, Rachel, et al.
Publicado: (2022) -
LGG-19. MULTI-MODALITY CHARACTERIZATION OF PEDIATRIC LOW-GRADE GLIOMA: THE ADDED VALUE OF DIFFERENT DATA MODALITIES
por: Haldar, Debanjan, et al.
Publicado: (2023) -
IMG-06. RADIOMIC-BASED RISK STRATIFICATION OF PEDIATRIC LOW-GRADE GLIOMA REVEALS DIFFERENTIALLY EXPRESSED MOLECULAR PROCESSES CONTRIBUTING TO VARIABLE PATIENT PROGNOSIS
por: Kazerooni, Anahita Fathi, et al.
Publicado: (2023) -
IMG-07. MOLECULAR PROCESSES GIVE RISE TO EMERGENCE OF RADIO-PHENOTYPES ON MRI SCANS OF PEDIATRIC LOW-GRADE GLIOMA
por: Kazerooni, Anahita Fathi, et al.
Publicado: (2023)