Cargando…
The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
BACKGROUND AND PURPOSE: Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L‐type voltage‐gated Ca(2+) channels (VGCCs). Genetic variants in ITGA9, which encod...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805129/ https://www.ncbi.nlm.nih.gov/pubmed/35802072 http://dx.doi.org/10.1111/bph.15921 |
_version_ | 1784862272995196928 |
---|---|
author | Morris, Gavin E. Denniff, Matthew J. Karamanavi, Elisavet Andrews, Sarah A. Kostogrys, Renata B. Bountziouka, Vasiliki Ghaderi‐Najafabadi, Maryam Shamkhi, Noor McConnell, George Kaiser, Michael A. Carleton, Laura Schofield, Christine Kessler, Thorsten Rainbow, Richard D. Samani, Nilesh J. Webb, Thomas R. |
author_facet | Morris, Gavin E. Denniff, Matthew J. Karamanavi, Elisavet Andrews, Sarah A. Kostogrys, Renata B. Bountziouka, Vasiliki Ghaderi‐Najafabadi, Maryam Shamkhi, Noor McConnell, George Kaiser, Michael A. Carleton, Laura Schofield, Christine Kessler, Thorsten Rainbow, Richard D. Samani, Nilesh J. Webb, Thomas R. |
author_sort | Morris, Gavin E. |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L‐type voltage‐gated Ca(2+) channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH: SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell‐derived VSMCs were used in in vitro [Ca(2+)](i) studies, and aortas from a Svep1 ( +/− ) knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS: We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca(2+)](i) levels in isolated VSMCs to Gα(q/11)‐vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1 ( +/− ) mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS: Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci. |
format | Online Article Text |
id | pubmed-9805129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98051292023-01-06 The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 Morris, Gavin E. Denniff, Matthew J. Karamanavi, Elisavet Andrews, Sarah A. Kostogrys, Renata B. Bountziouka, Vasiliki Ghaderi‐Najafabadi, Maryam Shamkhi, Noor McConnell, George Kaiser, Michael A. Carleton, Laura Schofield, Christine Kessler, Thorsten Rainbow, Richard D. Samani, Nilesh J. Webb, Thomas R. Br J Pharmacol Research Articles BACKGROUND AND PURPOSE: Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L‐type voltage‐gated Ca(2+) channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH: SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell‐derived VSMCs were used in in vitro [Ca(2+)](i) studies, and aortas from a Svep1 ( +/− ) knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS: We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca(2+)](i) levels in isolated VSMCs to Gα(q/11)‐vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1 ( +/− ) mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS: Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci. John Wiley and Sons Inc. 2022-08-02 2022-11 /pmc/articles/PMC9805129/ /pubmed/35802072 http://dx.doi.org/10.1111/bph.15921 Text en © 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Morris, Gavin E. Denniff, Matthew J. Karamanavi, Elisavet Andrews, Sarah A. Kostogrys, Renata B. Bountziouka, Vasiliki Ghaderi‐Najafabadi, Maryam Shamkhi, Noor McConnell, George Kaiser, Michael A. Carleton, Laura Schofield, Christine Kessler, Thorsten Rainbow, Richard D. Samani, Nilesh J. Webb, Thomas R. The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 |
title | The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 |
title_full | The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 |
title_fullStr | The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 |
title_full_unstemmed | The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 |
title_short | The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 |
title_sort | integrin ligand svep1 regulates gpcr‐mediated vasoconstriction via integrins α9β1 and α4β1 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805129/ https://www.ncbi.nlm.nih.gov/pubmed/35802072 http://dx.doi.org/10.1111/bph.15921 |
work_keys_str_mv | AT morrisgavine theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT denniffmatthewj theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT karamanavielisavet theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT andrewssaraha theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT kostogrysrenatab theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT bountzioukavasiliki theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT ghaderinajafabadimaryam theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT shamkhinoor theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT mcconnellgeorge theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT kaisermichaela theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT carletonlaura theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT schofieldchristine theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT kesslerthorsten theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT rainbowrichardd theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT samaninileshj theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT webbthomasr theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT morrisgavine integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT denniffmatthewj integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT karamanavielisavet integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT andrewssaraha integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT kostogrysrenatab integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT bountzioukavasiliki integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT ghaderinajafabadimaryam integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT shamkhinoor integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT mcconnellgeorge integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT kaisermichaela integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT carletonlaura integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT schofieldchristine integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT kesslerthorsten integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT rainbowrichardd integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT samaninileshj integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 AT webbthomasr integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1 |