Cargando…

The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1

BACKGROUND AND PURPOSE: Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L‐type voltage‐gated Ca(2+) channels (VGCCs). Genetic variants in ITGA9, which encod...

Descripción completa

Detalles Bibliográficos
Autores principales: Morris, Gavin E., Denniff, Matthew J., Karamanavi, Elisavet, Andrews, Sarah A., Kostogrys, Renata B., Bountziouka, Vasiliki, Ghaderi‐Najafabadi, Maryam, Shamkhi, Noor, McConnell, George, Kaiser, Michael A., Carleton, Laura, Schofield, Christine, Kessler, Thorsten, Rainbow, Richard D., Samani, Nilesh J., Webb, Thomas R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805129/
https://www.ncbi.nlm.nih.gov/pubmed/35802072
http://dx.doi.org/10.1111/bph.15921
_version_ 1784862272995196928
author Morris, Gavin E.
Denniff, Matthew J.
Karamanavi, Elisavet
Andrews, Sarah A.
Kostogrys, Renata B.
Bountziouka, Vasiliki
Ghaderi‐Najafabadi, Maryam
Shamkhi, Noor
McConnell, George
Kaiser, Michael A.
Carleton, Laura
Schofield, Christine
Kessler, Thorsten
Rainbow, Richard D.
Samani, Nilesh J.
Webb, Thomas R.
author_facet Morris, Gavin E.
Denniff, Matthew J.
Karamanavi, Elisavet
Andrews, Sarah A.
Kostogrys, Renata B.
Bountziouka, Vasiliki
Ghaderi‐Najafabadi, Maryam
Shamkhi, Noor
McConnell, George
Kaiser, Michael A.
Carleton, Laura
Schofield, Christine
Kessler, Thorsten
Rainbow, Richard D.
Samani, Nilesh J.
Webb, Thomas R.
author_sort Morris, Gavin E.
collection PubMed
description BACKGROUND AND PURPOSE: Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L‐type voltage‐gated Ca(2+) channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH: SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell‐derived VSMCs were used in in vitro [Ca(2+)](i) studies, and aortas from a Svep1 ( +/− ) knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS: We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca(2+)](i) levels in isolated VSMCs to Gα(q/11)‐vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1 ( +/− ) mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS: Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci.
format Online
Article
Text
id pubmed-9805129
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-98051292023-01-06 The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1 Morris, Gavin E. Denniff, Matthew J. Karamanavi, Elisavet Andrews, Sarah A. Kostogrys, Renata B. Bountziouka, Vasiliki Ghaderi‐Najafabadi, Maryam Shamkhi, Noor McConnell, George Kaiser, Michael A. Carleton, Laura Schofield, Christine Kessler, Thorsten Rainbow, Richard D. Samani, Nilesh J. Webb, Thomas R. Br J Pharmacol Research Articles BACKGROUND AND PURPOSE: Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L‐type voltage‐gated Ca(2+) channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH: SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell‐derived VSMCs were used in in vitro [Ca(2+)](i) studies, and aortas from a Svep1 ( +/− ) knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS: We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca(2+)](i) levels in isolated VSMCs to Gα(q/11)‐vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1 ( +/− ) mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS: Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci. John Wiley and Sons Inc. 2022-08-02 2022-11 /pmc/articles/PMC9805129/ /pubmed/35802072 http://dx.doi.org/10.1111/bph.15921 Text en © 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Morris, Gavin E.
Denniff, Matthew J.
Karamanavi, Elisavet
Andrews, Sarah A.
Kostogrys, Renata B.
Bountziouka, Vasiliki
Ghaderi‐Najafabadi, Maryam
Shamkhi, Noor
McConnell, George
Kaiser, Michael A.
Carleton, Laura
Schofield, Christine
Kessler, Thorsten
Rainbow, Richard D.
Samani, Nilesh J.
Webb, Thomas R.
The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
title The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
title_full The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
title_fullStr The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
title_full_unstemmed The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
title_short The integrin ligand SVEP1 regulates GPCR‐mediated vasoconstriction via integrins α9β1 and α4β1
title_sort integrin ligand svep1 regulates gpcr‐mediated vasoconstriction via integrins α9β1 and α4β1
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805129/
https://www.ncbi.nlm.nih.gov/pubmed/35802072
http://dx.doi.org/10.1111/bph.15921
work_keys_str_mv AT morrisgavine theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT denniffmatthewj theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT karamanavielisavet theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT andrewssaraha theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT kostogrysrenatab theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT bountzioukavasiliki theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT ghaderinajafabadimaryam theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT shamkhinoor theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT mcconnellgeorge theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT kaisermichaela theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT carletonlaura theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT schofieldchristine theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT kesslerthorsten theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT rainbowrichardd theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT samaninileshj theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT webbthomasr theintegrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT morrisgavine integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT denniffmatthewj integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT karamanavielisavet integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT andrewssaraha integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT kostogrysrenatab integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT bountzioukavasiliki integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT ghaderinajafabadimaryam integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT shamkhinoor integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT mcconnellgeorge integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT kaisermichaela integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT carletonlaura integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT schofieldchristine integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT kesslerthorsten integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT rainbowrichardd integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT samaninileshj integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1
AT webbthomasr integrinligandsvep1regulatesgpcrmediatedvasoconstrictionviaintegrinsa9b1anda4b1