Cargando…

DNA repair protein RAD52 is required for protecting G-quadruplexes in mammalian cells

G-quadruplex (G4)-forming DNA sequences are abundant in the human genome, and they are hot spots for inducing DNA double-strand breaks (DSBs) and genome instability. The mechanisms involved in protecting G4s and maintaining genome stability have not been fully elucidated. Here, we demonstrated that...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shuo, Wang, Zi, Shah, Sameer Bikram, Chang, Chia-Yu, Ai, Michael, Nguyen, Tran, Xiang, Rong, Wu, Xiaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807996/
https://www.ncbi.nlm.nih.gov/pubmed/36470428
http://dx.doi.org/10.1016/j.jbc.2022.102770
Descripción
Sumario:G-quadruplex (G4)-forming DNA sequences are abundant in the human genome, and they are hot spots for inducing DNA double-strand breaks (DSBs) and genome instability. The mechanisms involved in protecting G4s and maintaining genome stability have not been fully elucidated. Here, we demonstrated that RAD52 plays an important role in suppressing DSB accumulation at G4s, and RAD52-deficient cells are sensitive to G4-stabilizing compounds. Mechanistically, we showed that RAD52 is required for efficient homologous recombination repair at G4s, likely due to its function in recruiting structure-specific endonuclease XPF to remove G4 structures at DSB ends. We also demonstrated that upon G4 stabilization, endonuclease MUS81 mediates cleavage of stalled replication forks at G4s. The resulting DSBs recruit RAD52 and XPF to G4s for processing DSB ends to facilitate homologous recombination repair. Loss of RAD52 along with G4-resolving helicase FANCJ leads to a significant increase of DSB accumulation before and after treatment with the G4-stabilizing compound pyridostatin, and RAD52 exhibits a synthetic lethal interaction with FANCJ. Collectively, our findings reveal a new role of RAD52 in protecting G4 integrity and provide insights for new cancer treatment strategies.