Cargando…

A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology

Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel t...

Descripción completa

Detalles Bibliográficos
Autores principales: Viola, Helena M., Richworth, Caitlyn, Solomon, Tanya, Chin, Ian L., Szappanos, Henrietta Cserne, Sundararaj, Srinivasan, Shishmarev, Dmitry, Casarotto, Marco G., Choi, Yu Suk, Hool, Livia C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810744/
https://www.ncbi.nlm.nih.gov/pubmed/36596888
http://dx.doi.org/10.1038/s42003-022-04278-9
_version_ 1784863373555400704
author Viola, Helena M.
Richworth, Caitlyn
Solomon, Tanya
Chin, Ian L.
Szappanos, Henrietta Cserne
Sundararaj, Srinivasan
Shishmarev, Dmitry
Casarotto, Marco G.
Choi, Yu Suk
Hool, Livia C.
author_facet Viola, Helena M.
Richworth, Caitlyn
Solomon, Tanya
Chin, Ian L.
Szappanos, Henrietta Cserne
Sundararaj, Srinivasan
Shishmarev, Dmitry
Casarotto, Marco G.
Choi, Yu Suk
Hool, Livia C.
author_sort Viola, Helena M.
collection PubMed
description Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel technology. Culturing wild-type cardiac myocytes on hydrogels with a Young’s Moduli (stiffness) mimicking hypertrophic cardiomyopathy myocardium is sufficient to induce a hypermetabolic mitochondrial state versus myocytes plated on hydrogels simulating healthy myocardium. Significantly, these data mirror that of myocytes isolated from a murine model of human hypertrophic cardiomyopathy (cTnI-G203S). Conversely, cTnI-G203S myocyte mitochondrial function is completely restored when plated on hydrogels mimicking healthy myocardium. We identify a mechanosensing feedback mechanism between the extracellular matrix and cytoskeletal network that regulates mitochondrial function under healthy conditions, but participates in the progression of hypertrophic cardiomyopathy pathophysiology resulting from sarcomeric gene mutations. Importantly, we pinpoint key ‘linker’ sites in this schema that may represent potential therapeutic targets.
format Online
Article
Text
id pubmed-9810744
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-98107442023-01-05 A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology Viola, Helena M. Richworth, Caitlyn Solomon, Tanya Chin, Ian L. Szappanos, Henrietta Cserne Sundararaj, Srinivasan Shishmarev, Dmitry Casarotto, Marco G. Choi, Yu Suk Hool, Livia C. Commun Biol Article Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel technology. Culturing wild-type cardiac myocytes on hydrogels with a Young’s Moduli (stiffness) mimicking hypertrophic cardiomyopathy myocardium is sufficient to induce a hypermetabolic mitochondrial state versus myocytes plated on hydrogels simulating healthy myocardium. Significantly, these data mirror that of myocytes isolated from a murine model of human hypertrophic cardiomyopathy (cTnI-G203S). Conversely, cTnI-G203S myocyte mitochondrial function is completely restored when plated on hydrogels mimicking healthy myocardium. We identify a mechanosensing feedback mechanism between the extracellular matrix and cytoskeletal network that regulates mitochondrial function under healthy conditions, but participates in the progression of hypertrophic cardiomyopathy pathophysiology resulting from sarcomeric gene mutations. Importantly, we pinpoint key ‘linker’ sites in this schema that may represent potential therapeutic targets. Nature Publishing Group UK 2023-01-03 /pmc/articles/PMC9810744/ /pubmed/36596888 http://dx.doi.org/10.1038/s42003-022-04278-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Viola, Helena M.
Richworth, Caitlyn
Solomon, Tanya
Chin, Ian L.
Szappanos, Henrietta Cserne
Sundararaj, Srinivasan
Shishmarev, Dmitry
Casarotto, Marco G.
Choi, Yu Suk
Hool, Livia C.
A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
title A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
title_full A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
title_fullStr A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
title_full_unstemmed A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
title_short A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
title_sort maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810744/
https://www.ncbi.nlm.nih.gov/pubmed/36596888
http://dx.doi.org/10.1038/s42003-022-04278-9
work_keys_str_mv AT violahelenam amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT richworthcaitlyn amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT solomontanya amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT chinianl amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT szappanoshenriettacserne amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT sundararajsrinivasan amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT shishmarevdmitry amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT casarottomarcog amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT choiyusuk amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT hoolliviac amaladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT violahelenam maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT richworthcaitlyn maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT solomontanya maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT chinianl maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT szappanoshenriettacserne maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT sundararajsrinivasan maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT shishmarevdmitry maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT casarottomarcog maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT choiyusuk maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology
AT hoolliviac maladaptivefeedbackmechanismbetweentheextracellularmatrixandcytoskeletoncontributestohypertrophiccardiomyopathypathophysiology