Cargando…

Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss

BACKGROUND: Single-cell omics technology is rapidly developing to measure the epigenome, genome, and transcriptome across a range of cell types. However, it is still challenging to integrate omics data from different modalities. Here, we propose a variation of the Siamese neural network framework ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chaozhong, Wang, Linhua, Liu, Zhandong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812356/
https://www.ncbi.nlm.nih.gov/pubmed/36600199
http://dx.doi.org/10.1186/s12859-022-05126-7
Descripción
Sumario:BACKGROUND: Single-cell omics technology is rapidly developing to measure the epigenome, genome, and transcriptome across a range of cell types. However, it is still challenging to integrate omics data from different modalities. Here, we propose a variation of the Siamese neural network framework called MinNet, which is trained to integrate multi-omics data on the single-cell resolution by using graph-based contrastive loss. RESULTS: By training the model and testing it on several benchmark datasets, we showed its accuracy and generalizability in integrating scRNA-seq with scATAC-seq, and scRNA-seq with epitope data. Further evaluation demonstrated our model's unique ability to remove the batch effect, a common problem in actual practice. To show how the integration impacts downstream analysis, we established model-based smoothing and cis-regulatory element-inferring method and validated it with external pcHi-C evidence. Finally, we applied the framework to a COVID-19 dataset to bolster the original work with integration-based analysis, showing its necessity in single-cell multi-omics research. CONCLUSIONS: MinNet is a novel deep-learning framework for single-cell multi-omics sequencing data integration. It ranked top among other methods in benchmarking and is especially suitable for integrating datasets with batch and biological variances. With the single-cell resolution integration results, analysis of the interplay between genome and transcriptome can be done to help researchers understand their data and question. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-05126-7.