Cargando…
Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss
BACKGROUND: Single-cell omics technology is rapidly developing to measure the epigenome, genome, and transcriptome across a range of cell types. However, it is still challenging to integrate omics data from different modalities. Here, we propose a variation of the Siamese neural network framework ca...
Autores principales: | Liu, Chaozhong, Wang, Linhua, Liu, Zhandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812356/ https://www.ncbi.nlm.nih.gov/pubmed/36600199 http://dx.doi.org/10.1186/s12859-022-05126-7 |
Ejemplares similares
-
Correction: Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss
por: Liu, Chaozhong, et al.
Publicado: (2023) -
scGREAT: Graph-based regulatory element analysis tool for single-cell multi-omics data
por: Liu, Chaozhong, et al.
Publicado: (2023) -
Integration of single-cell multi-omics data by regression analysis on unpaired observations
por: Yuan, Qiuyue, et al.
Publicado: (2022) -
A universal framework for single-cell multi-omics data integration with graph convolutional networks
por: Gao, Hongli, et al.
Publicado: (2023) -
Unraveling Spatial Gene Associations with SEAGAL: a Python Package for Spatial Transcriptomics Data Analysis and Visualization
por: Wang, Linhua, et al.
Publicado: (2023)