Cargando…
Improving clinical trial design using interpretable machine learning based prediction of early trial termination
This study proposes using a machine learning pipeline to optimise clinical trial design. The goal is to predict early termination probability of clinical trials using machine learning modelling, and to understand feature contributions driving early termination. This will inform further suggestions t...
Autores principales: | Kavalci, Ece, Hartshorn, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813129/ https://www.ncbi.nlm.nih.gov/pubmed/36599880 http://dx.doi.org/10.1038/s41598-023-27416-7 |
Ejemplares similares
-
Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome
por: Schwager, E., et al.
Publicado: (2021) -
On the interpretability of machine learning-based model for predicting hypertension
por: Elshawi, Radwa, et al.
Publicado: (2019) -
Application of interpretable machine learning for early prediction of prognosis in acute kidney injury
por: Hu, Chang, et al.
Publicado: (2022) -
Interpretable machine learning for prediction of clinical outcomes in acute ischemic stroke
por: Lee, Joonwon, et al.
Publicado: (2023) -
Harnessing interpretable machine learning for holistic inverse design of origami
por: Zhu, Yi, et al.
Publicado: (2022)