Cargando…
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820816/ https://www.ncbi.nlm.nih.gov/pubmed/36613977 http://dx.doi.org/10.3390/ijms24010534 |
_version_ | 1784865551442509824 |
---|---|
author | Węsierska, Magdalena Nowicka, Wioletta Kloska, Anna Jakóbkiewicz-Banecka, Joanna Malinowska, Marcelina |
author_facet | Węsierska, Magdalena Nowicka, Wioletta Kloska, Anna Jakóbkiewicz-Banecka, Joanna Malinowska, Marcelina |
author_sort | Węsierska, Magdalena |
collection | PubMed |
description | Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions. |
format | Online Article Text |
id | pubmed-9820816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98208162023-01-07 Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I Węsierska, Magdalena Nowicka, Wioletta Kloska, Anna Jakóbkiewicz-Banecka, Joanna Malinowska, Marcelina Int J Mol Sci Article Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions. MDPI 2022-12-28 /pmc/articles/PMC9820816/ /pubmed/36613977 http://dx.doi.org/10.3390/ijms24010534 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Węsierska, Magdalena Nowicka, Wioletta Kloska, Anna Jakóbkiewicz-Banecka, Joanna Malinowska, Marcelina Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I |
title | Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I |
title_full | Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I |
title_fullStr | Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I |
title_full_unstemmed | Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I |
title_short | Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I |
title_sort | murine fibroblasts and primary hepatocytes as tools when studying the efficacy of potential therapies for mucopolysaccharidosis type i |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820816/ https://www.ncbi.nlm.nih.gov/pubmed/36613977 http://dx.doi.org/10.3390/ijms24010534 |
work_keys_str_mv | AT wesierskamagdalena murinefibroblastsandprimaryhepatocytesastoolswhenstudyingtheefficacyofpotentialtherapiesformucopolysaccharidosistypei AT nowickawioletta murinefibroblastsandprimaryhepatocytesastoolswhenstudyingtheefficacyofpotentialtherapiesformucopolysaccharidosistypei AT kloskaanna murinefibroblastsandprimaryhepatocytesastoolswhenstudyingtheefficacyofpotentialtherapiesformucopolysaccharidosistypei AT jakobkiewiczbaneckajoanna murinefibroblastsandprimaryhepatocytesastoolswhenstudyingtheefficacyofpotentialtherapiesformucopolysaccharidosistypei AT malinowskamarcelina murinefibroblastsandprimaryhepatocytesastoolswhenstudyingtheefficacyofpotentialtherapiesformucopolysaccharidosistypei |