Cargando…

Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading

In this paper, the residual stresses with a nanoscale depth resolution at TSV-Cu/TiW/SiO(2)/Si interfaces under different thermal loadings are characterized using the ion-beam layer removal (ILR) method. Moreover, the correlations of residual stress, microstructure, and the failure modes of the inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Min, Chen, Fangzhou, Qin, Fei, Chen, Si, Dai, Yanwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821935/
https://www.ncbi.nlm.nih.gov/pubmed/36614786
http://dx.doi.org/10.3390/ma16010449
_version_ 1784865821559881728
author Zhang, Min
Chen, Fangzhou
Qin, Fei
Chen, Si
Dai, Yanwei
author_facet Zhang, Min
Chen, Fangzhou
Qin, Fei
Chen, Si
Dai, Yanwei
author_sort Zhang, Min
collection PubMed
description In this paper, the residual stresses with a nanoscale depth resolution at TSV-Cu/TiW/SiO(2)/Si interfaces under different thermal loadings are characterized using the ion-beam layer removal (ILR) method. Moreover, the correlations of residual stress, microstructure, and the failure modes of the interfaces are discussed. The residual stresses at the interfaces of TSV-Cu/TiW, TiW/SiO(2), and SiO(2)/Si are in the form of small compressive stress at room temperature, then turn into high-tensile stress after thermal cycling or annealing. In addition, the maximum residual stress inside the TSV-Cu is 478.54 MPa at room temperature, then decreases to 216.75 MPa and 90.45 MPa, respectively, after thermal cycling and annealing. The microstructural analysis indicates that thermal cycling causes an increase in the dislocation density and a decrease in the grain diameter of TSV-Cu. Thus, residual stress accumulates constantly in the TSV-Cu/TiW interface, resulting in the cracking of the interface. Furthermore, annealing leads to the cracking of more interfaces, relieving the residual stress as well as increasing the grain diameter of TSV-Cu. Besides this, the applicability of the ILR method is verified by finite element modeling (FEM). The influence of the geometric errors of the micro-cantilever beam and the damage to the materials introduced by the focused ion beam (FIB) in the experimental results are discussed.
format Online
Article
Text
id pubmed-9821935
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98219352023-01-07 Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading Zhang, Min Chen, Fangzhou Qin, Fei Chen, Si Dai, Yanwei Materials (Basel) Article In this paper, the residual stresses with a nanoscale depth resolution at TSV-Cu/TiW/SiO(2)/Si interfaces under different thermal loadings are characterized using the ion-beam layer removal (ILR) method. Moreover, the correlations of residual stress, microstructure, and the failure modes of the interfaces are discussed. The residual stresses at the interfaces of TSV-Cu/TiW, TiW/SiO(2), and SiO(2)/Si are in the form of small compressive stress at room temperature, then turn into high-tensile stress after thermal cycling or annealing. In addition, the maximum residual stress inside the TSV-Cu is 478.54 MPa at room temperature, then decreases to 216.75 MPa and 90.45 MPa, respectively, after thermal cycling and annealing. The microstructural analysis indicates that thermal cycling causes an increase in the dislocation density and a decrease in the grain diameter of TSV-Cu. Thus, residual stress accumulates constantly in the TSV-Cu/TiW interface, resulting in the cracking of the interface. Furthermore, annealing leads to the cracking of more interfaces, relieving the residual stress as well as increasing the grain diameter of TSV-Cu. Besides this, the applicability of the ILR method is verified by finite element modeling (FEM). The influence of the geometric errors of the micro-cantilever beam and the damage to the materials introduced by the focused ion beam (FIB) in the experimental results are discussed. MDPI 2023-01-03 /pmc/articles/PMC9821935/ /pubmed/36614786 http://dx.doi.org/10.3390/ma16010449 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Min
Chen, Fangzhou
Qin, Fei
Chen, Si
Dai, Yanwei
Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading
title Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading
title_full Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading
title_fullStr Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading
title_full_unstemmed Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading
title_short Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO(2)/Si Interfaces after Different Thermal Loading
title_sort correlations between microstructure and residual stress of nanoscale depth profiles for tsv-cu/tiw/sio(2)/si interfaces after different thermal loading
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821935/
https://www.ncbi.nlm.nih.gov/pubmed/36614786
http://dx.doi.org/10.3390/ma16010449
work_keys_str_mv AT zhangmin correlationsbetweenmicrostructureandresidualstressofnanoscaledepthprofilesfortsvcutiwsio2siinterfacesafterdifferentthermalloading
AT chenfangzhou correlationsbetweenmicrostructureandresidualstressofnanoscaledepthprofilesfortsvcutiwsio2siinterfacesafterdifferentthermalloading
AT qinfei correlationsbetweenmicrostructureandresidualstressofnanoscaledepthprofilesfortsvcutiwsio2siinterfacesafterdifferentthermalloading
AT chensi correlationsbetweenmicrostructureandresidualstressofnanoscaledepthprofilesfortsvcutiwsio2siinterfacesafterdifferentthermalloading
AT daiyanwei correlationsbetweenmicrostructureandresidualstressofnanoscaledepthprofilesfortsvcutiwsio2siinterfacesafterdifferentthermalloading