Cargando…

Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System

The objectives of this study were to produce sodium alginate (SA)-based cryogel beads filled with different concentrations (0, 0.4, 1.0, and 2.5%, w/w) of hydroxypropyl distarch phosphate (HDP) as a curcumin delivery system and to investigate the physicochemical, structural, and in vitro gastrointes...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Eun Chae, Chang, Yoon Hyuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822046/
https://www.ncbi.nlm.nih.gov/pubmed/36615227
http://dx.doi.org/10.3390/molecules28010031
_version_ 1784865849164693504
author Moon, Eun Chae
Chang, Yoon Hyuk
author_facet Moon, Eun Chae
Chang, Yoon Hyuk
author_sort Moon, Eun Chae
collection PubMed
description The objectives of this study were to produce sodium alginate (SA)-based cryogel beads filled with different concentrations (0, 0.4, 1.0, and 2.5%, w/w) of hydroxypropyl distarch phosphate (HDP) as a curcumin delivery system and to investigate the physicochemical, structural, and in vitro gastrointestinal tract release properties of the cryogel beads. According to FT-IR analysis, the formation of ionic crosslinking between SA and Ca(2+) and the presence of HDP were found. XRD analysis demonstrated the successful encapsulation of curcumin in the beads by observing the disappearance of the characteristic peaks of curcumin. SEM analysis results revelated that SA-based cryogel beads exhibited a denser internal structure as the HDP concentration was increased. The encapsulation efficiency of curcumin in SA cryogel beads filled with HDP concentration from 0% to 2.5% was increased from 31.95% to 76.66%, respectively, indicating that HDP can be a suitable filler for the encapsulation of curcumin in the production of SA-based cryogel beads. After exposure to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), the release rate of curcumin was decreased as HDP concentration was increased. Accordingly, SA-based cryogel beads filled with HDP can be utilized for the delivery system of curcumin in the food industry.
format Online
Article
Text
id pubmed-9822046
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98220462023-01-07 Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System Moon, Eun Chae Chang, Yoon Hyuk Molecules Article The objectives of this study were to produce sodium alginate (SA)-based cryogel beads filled with different concentrations (0, 0.4, 1.0, and 2.5%, w/w) of hydroxypropyl distarch phosphate (HDP) as a curcumin delivery system and to investigate the physicochemical, structural, and in vitro gastrointestinal tract release properties of the cryogel beads. According to FT-IR analysis, the formation of ionic crosslinking between SA and Ca(2+) and the presence of HDP were found. XRD analysis demonstrated the successful encapsulation of curcumin in the beads by observing the disappearance of the characteristic peaks of curcumin. SEM analysis results revelated that SA-based cryogel beads exhibited a denser internal structure as the HDP concentration was increased. The encapsulation efficiency of curcumin in SA cryogel beads filled with HDP concentration from 0% to 2.5% was increased from 31.95% to 76.66%, respectively, indicating that HDP can be a suitable filler for the encapsulation of curcumin in the production of SA-based cryogel beads. After exposure to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), the release rate of curcumin was decreased as HDP concentration was increased. Accordingly, SA-based cryogel beads filled with HDP can be utilized for the delivery system of curcumin in the food industry. MDPI 2022-12-21 /pmc/articles/PMC9822046/ /pubmed/36615227 http://dx.doi.org/10.3390/molecules28010031 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Moon, Eun Chae
Chang, Yoon Hyuk
Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System
title Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System
title_full Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System
title_fullStr Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System
title_full_unstemmed Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System
title_short Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System
title_sort physicochemical, structural, and in vitro gastrointestinal tract release properties of sodium alginate-based cryogel beads filled with hydroxypropyl distarch phosphate as a curcumin delivery system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822046/
https://www.ncbi.nlm.nih.gov/pubmed/36615227
http://dx.doi.org/10.3390/molecules28010031
work_keys_str_mv AT mooneunchae physicochemicalstructuralandinvitrogastrointestinaltractreleasepropertiesofsodiumalginatebasedcryogelbeadsfilledwithhydroxypropyldistarchphosphateasacurcumindeliverysystem
AT changyoonhyuk physicochemicalstructuralandinvitrogastrointestinaltractreleasepropertiesofsodiumalginatebasedcryogelbeadsfilledwithhydroxypropyldistarchphosphateasacurcumindeliverysystem