Cargando…
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
The key to autonomous navigation in unmanned systems is the ability to recognize static and moving objects in the environment and to support the task of predicting the future state of the environment, avoiding collisions, and planning. However, because the existing 3D LiDAR point-cloud moving object...
Autores principales: | Xie, Xing, Wei, Haowen, Yang, Yongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824061/ https://www.ncbi.nlm.nih.gov/pubmed/36617142 http://dx.doi.org/10.3390/s23010547 |
Ejemplares similares
-
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020) -
Real time object detection using LiDAR and camera fusion for autonomous driving
por: Liu, Haibin, et al.
Publicado: (2023) -
Up-Sampling Method for Low-Resolution LiDAR Point Cloud to Enhance 3D Object Detection in an Autonomous Driving Environment
por: You, Jihwan, et al.
Publicado: (2022) -
Method for extraction of airborne LiDAR point cloud buildings based on segmentation
por: Liu, Maohua, et al.
Publicado: (2020) -
Real-time depth completion based on LiDAR-stereo for autonomous driving
por: Wei, Ming, et al.
Publicado: (2023)