Cargando…
MALS-Net: A Multi-Head Attention-Based LSTM Sequence-to-Sequence Network for Socio-Temporal Interaction Modelling and Trajectory Prediction
Predicting the trajectories of surrounding vehicles is an essential task in autonomous driving, especially in a highway setting, where minor deviations in motion can cause serious road accidents. The future trajectory prediction is often not only based on historical trajectories but also on a repres...
Autores principales: | Hasan, Fuad, Huang, Hailong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824267/ https://www.ncbi.nlm.nih.gov/pubmed/36617127 http://dx.doi.org/10.3390/s23010530 |
Ejemplares similares
-
Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM
por: Chen, Cai, et al.
Publicado: (2023) -
Attention-LSTM based prediction model for aircraft 4-D trajectory
por: Jia, Peiyan, et al.
Publicado: (2022) -
EvoLSTM: context-dependent models of sequence evolution using a sequence-to-sequence LSTM
por: Lim, Dongjoon, et al.
Publicado: (2020) -
Multi-Head Self-Attention Model for Classification of Temporal Lobe Epilepsy Subtypes
por: Gu, Peipei, et al.
Publicado: (2020) -
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023)