Cargando…
Cramér–Rao Bounds for DoA Estimation of Sparse Bayesian Learning with the Laplace Prior
In this paper, we derive the Cramér–Rao lower bounds (CRLB) for direction of arrival (DoA) estimation by using sparse Bayesian learning (SBL) and the Laplace prior. CRLB is a lower bound on the variance of the estimator, the change of CRLB can indicate the effect of the specific factor to the DoA es...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824496/ https://www.ncbi.nlm.nih.gov/pubmed/36616904 http://dx.doi.org/10.3390/s23010307 |