Cargando…
Cramér–Rao Bounds for DoA Estimation of Sparse Bayesian Learning with the Laplace Prior
In this paper, we derive the Cramér–Rao lower bounds (CRLB) for direction of arrival (DoA) estimation by using sparse Bayesian learning (SBL) and the Laplace prior. CRLB is a lower bound on the variance of the estimator, the change of CRLB can indicate the effect of the specific factor to the DoA es...
Autores principales: | Bai, Hua, Duarte, Marco F., Janaswamy, Ramakrishna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824496/ https://www.ncbi.nlm.nih.gov/pubmed/36616904 http://dx.doi.org/10.3390/s23010307 |
Ejemplares similares
-
Bayesian Cramér-Rao Lower Bounds for Prediction and Smoothing of Nonlinear TASD Systems
por: Li, Xianqing, et al.
Publicado: (2022) -
Transmission estimation at the quantum Cramér-Rao bound with macroscopic quantum light
por: Woodworth, Timothy S., et al.
Publicado: (2022) -
Cramér-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI
por: Mao, Andrew, et al.
Publicado: (2023) -
The Cramér–Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations
por: Wang, Zhiguo, et al.
Publicado: (2018) -
The Real-Valued Sparse Direction of Arrival (DOA) Estimation Based on the Khatri-Rao Product
por: Chen, Tao, et al.
Publicado: (2016)