Cargando…
Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis
Regulatory T cells (Tregs) suppress the activation and subsequent effector functions of CD4 effector T cells (Teffs). However, molecular mechanisms that enforce Treg-mediated suppression in CD4 Teff are unclear. We found that Tregs suppressed activation-induced global protein synthesis in CD4 Teffs...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827529/ https://www.ncbi.nlm.nih.gov/pubmed/36598533 http://dx.doi.org/10.1084/jem.20221676 |
_version_ | 1784867074746613760 |
---|---|
author | So, Lomon Obata-Ninomiya, Kazushige Hu, Alex Muir, Virginia S. Takamori, Ayako Song, Jing Buckner, Jane H. Savan, Ram Ziegler, Steven F. |
author_facet | So, Lomon Obata-Ninomiya, Kazushige Hu, Alex Muir, Virginia S. Takamori, Ayako Song, Jing Buckner, Jane H. Savan, Ram Ziegler, Steven F. |
author_sort | So, Lomon |
collection | PubMed |
description | Regulatory T cells (Tregs) suppress the activation and subsequent effector functions of CD4 effector T cells (Teffs). However, molecular mechanisms that enforce Treg-mediated suppression in CD4 Teff are unclear. We found that Tregs suppressed activation-induced global protein synthesis in CD4 Teffs prior to cell division. We analyzed genome-wide changes in the transcriptome and translatome of activated CD4 Teffs. We show that mRNAs encoding for the protein synthesis machinery are regulated at the level of translation in activated CD4 Teffs by Tregs. Tregs suppressed global protein synthesis of CD4 Teffs by specifically inhibiting mRNAs of the translation machinery at the level of mTORC1-mediated translation control through concerted action of immunosuppressive cytokines IL-10 and TGFβ. Lastly, we found that the therapeutic targeting of protein synthesis with the RNA helicase eIF4A inhibitor rocaglamide A can alleviate inflammatory CD4 Teff activation caused by acute Treg depletion in vivo. These data show that peripheral tolerance is enforced by Tregs through mRNA translational control in CD4 Teffs. |
format | Online Article Text |
id | pubmed-9827529 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98275292023-07-04 Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis So, Lomon Obata-Ninomiya, Kazushige Hu, Alex Muir, Virginia S. Takamori, Ayako Song, Jing Buckner, Jane H. Savan, Ram Ziegler, Steven F. J Exp Med Article Regulatory T cells (Tregs) suppress the activation and subsequent effector functions of CD4 effector T cells (Teffs). However, molecular mechanisms that enforce Treg-mediated suppression in CD4 Teff are unclear. We found that Tregs suppressed activation-induced global protein synthesis in CD4 Teffs prior to cell division. We analyzed genome-wide changes in the transcriptome and translatome of activated CD4 Teffs. We show that mRNAs encoding for the protein synthesis machinery are regulated at the level of translation in activated CD4 Teffs by Tregs. Tregs suppressed global protein synthesis of CD4 Teffs by specifically inhibiting mRNAs of the translation machinery at the level of mTORC1-mediated translation control through concerted action of immunosuppressive cytokines IL-10 and TGFβ. Lastly, we found that the therapeutic targeting of protein synthesis with the RNA helicase eIF4A inhibitor rocaglamide A can alleviate inflammatory CD4 Teff activation caused by acute Treg depletion in vivo. These data show that peripheral tolerance is enforced by Tregs through mRNA translational control in CD4 Teffs. Rockefeller University Press 2023-01-04 /pmc/articles/PMC9827529/ /pubmed/36598533 http://dx.doi.org/10.1084/jem.20221676 Text en © 2023 So et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article So, Lomon Obata-Ninomiya, Kazushige Hu, Alex Muir, Virginia S. Takamori, Ayako Song, Jing Buckner, Jane H. Savan, Ram Ziegler, Steven F. Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis |
title | Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis |
title_full | Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis |
title_fullStr | Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis |
title_full_unstemmed | Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis |
title_short | Regulatory T cells suppress CD4(+) effector T cell activation by controlling protein synthesis |
title_sort | regulatory t cells suppress cd4(+) effector t cell activation by controlling protein synthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827529/ https://www.ncbi.nlm.nih.gov/pubmed/36598533 http://dx.doi.org/10.1084/jem.20221676 |
work_keys_str_mv | AT solomon regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT obataninomiyakazushige regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT hualex regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT muirvirginias regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT takamoriayako regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT songjing regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT bucknerjaneh regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT savanram regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis AT zieglerstevenf regulatorytcellssuppresscd4effectortcellactivationbycontrollingproteinsynthesis |