Cargando…

Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis

Site- and enantioselective cross-coupling of saturated N-heterocycles and carboxylic acids—two of the most abundant and versatile functionalities—to form pharmaceutically relevant α-acylated amine derivatives remains a major challenge in organic synthesis. Here, we report a general strategy for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Shu, Xiaomin, Zhong, De, Huang, Qian, Huan, Leitao, Huo, Haohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829739/
https://www.ncbi.nlm.nih.gov/pubmed/36624097
http://dx.doi.org/10.1038/s41467-023-35800-0
Descripción
Sumario:Site- and enantioselective cross-coupling of saturated N-heterocycles and carboxylic acids—two of the most abundant and versatile functionalities—to form pharmaceutically relevant α-acylated amine derivatives remains a major challenge in organic synthesis. Here, we report a general strategy for the highly site- and enantioselective α-acylation of saturated N-heterocycles with in situ-activated carboxylic acids. This modular approach exploits the hydrogen-atom-transfer reactivity of photocatalytically generated chlorine radicals in combination with asymmetric nickel catalysis to selectively functionalize cyclic α-amino C−H bonds in the presence of benzylic, allylic, acyclic α-amino, and α-oxy methylene groups. The mild and scalable protocol requires no organometallic reagents, displays excellent chemo-, site- and enantioselectivity, and is amenable to late-stage diversification, including a modular synthesis of previously inaccessible Taxol derivatives. Mechanistic studies highlight the exceptional versatility of the chiral nickel catalyst in orchestrating (i) catalytic chlorine elimination, (ii) alkyl radical capture, (iii) cross-coupling, and (iv) asymmetric induction.