Cargando…
Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer’s disease prediction
Alzheimer’s disease (AD) is the most common late-onset neurodegenerative disorder. Identifying individuals at increased risk of developing AD is important for early intervention. Using data from the Alzheimer Disease Genetics Consortium, we constructed polygenic risk scores (PRSs) for AD and age-at-...
Autores principales: | Gao, Xiaoyi Raymond, Chiariglione, Marion, Qin, Ke, Nuytemans, Karen, Scharre, Douglas W., Li, Yi-Ju, Martin, Eden R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829871/ https://www.ncbi.nlm.nih.gov/pubmed/36624143 http://dx.doi.org/10.1038/s41598-023-27551-1 |
Ejemplares similares
-
Phenome-Wide Association Study of Polygenic Risk Score for Alzheimer’s Disease in Electronic Health Records
por: Fu, Mingzhou, et al.
Publicado: (2022) -
Whole-exome sequencing study identifies rare variants and genes associated with intraocular pressure and glaucoma
por: Gao, Xiaoyi Raymond, et al.
Publicado: (2022) -
Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank
por: Dashti, Hassan S., et al.
Publicado: (2022) -
10 Years of GWAS in intraocular pressure
por: Gao, Xiaoyi Raymond, et al.
Publicado: (2023) -
Epistatic Features and Machine Learning Improve Alzheimer’s Risk Prediction Over Polygenic Risk Scores
por: Hermes, Stephen, et al.
Publicado: (2023)