Cargando…
In-silico design and evaluation of an epitope-based serotype-independent promising vaccine candidate for highly cross-reactive regions of pneumococcal surface protein A
BACKGROUND: The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful se...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830136/ https://www.ncbi.nlm.nih.gov/pubmed/36627666 http://dx.doi.org/10.1186/s12967-022-03864-z |
Sumario: | BACKGROUND: The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful serotype-independent vaccine. Pneumococcal surface protein A (PspA) is an extremely important virulence factor and an interesting candidate for conserved protein-based pneumococcal vaccine classified into two prominent families containing five clades. PspA family-elicited immunity is clade-dependent, and the level of the PspA cross-reactivity is restricted to the same family. METHODS: To cover and overcome the clade-dependent immunity of the PspAs in this study, we designed and tested a PspA(1-5c+p) vaccine candidate composed of the highest immunodominant coverage of B- and T-cell epitope truncated domain of each clade focusing on two cross-reactive B and C regions of the PspAs. The antigenicity, toxicity, physicochemical properties, 3D structure prediction, stability and flexibility of the designed protein using molecular dynamic (MD) simulation, molecular docking of the construct withHLADRB1*(01:01) and human lactoferrin N-lop, and immune simulation were assessed using immunoinformatics tools. In the experimental section, after intraperitoneal immunization of the mice with Alum adjuvanted recombinant PspA(1-5c+p), we evaluated the immune response, cross-reactivity, and functionality of the Anti-PspA(1-5c+p) antibody using ELISA, Opsonophagocytic killing activity, and serum bactericidal assay. RESULTS: For the first time, this work suggested a novel PspA-based vaccine candidate using immunoinformatics tools. The designed PspA(1-5c+p) protein is predicted to be highly antigenic, non-toxic, soluble, stable with low flexibility in MD simulation, and able to stimulate both humoral and cellular immune responses. The designed protein also could interact strongly with HLADRB1*(01:01) and human lactoferrin N-lop in the docking study. Our immunoinformatics predictions were validated using experimental data. Results showed that the anti-PspA(1-5c+p) IgG not only had a high titer with strong and same cross-reactivity coverage against all pneumococcal serotypes used but also had high and effective bioactivity for pneumococcal clearance using complement system and phagocytic cells. CONCLUSION: Our findings elucidated the potential application of the PspA(1-5c+p) vaccine candidate as a serotype-independent pneumococcal vaccine with a strong cross-reactivity feature. Further in-vitro and in-vivo investigations against other PspA clades should be performed to confirm the full protection of the PspA(1-5c+p) vaccine candidate. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03864-z. |
---|