Cargando…
Machine learning enabled subgroup analysis with real-world data to inform clinical trial eligibility criteria design
Overly restrictive eligibility criteria for clinical trials may limit the generalizability of the trial results to their target real-world patient populations. We developed a novel machine learning approach using large collections of real-world data (RWD) to better inform clinical trial eligibility...
Autores principales: | Xu, Jie, Zhang, Hao, Zhang, Hansi, Bian, Jiang, Wang, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9837131/ https://www.ncbi.nlm.nih.gov/pubmed/36635438 http://dx.doi.org/10.1038/s41598-023-27856-1 |
Ejemplares similares
-
Outcomes of ECLS-SHOCK Eligibility Criteria Applied to a Real-World Cohort
por: von Lewinski, Dirk, et al.
Publicado: (2023) -
Semantic categorization of Chinese eligibility criteria in clinical trials using machine learning methods
por: Zong, Hui, et al.
Publicado: (2021) -
Real-World Data for Planning Eligibility Criteria and Enhancing Recruitment: Recommendations from the Clinical Trials Transformation Initiative
por: Evans, Scott R., et al.
Publicado: (2021) -
The criteria of eligibility to the extracorporeal treatment
por: Zangrillo, A
Publicado: (2012) -
Translating evidence into practice: eligibility criteria fail to eliminate clinically significant differences between real-world and study populations
por: Averitt, Amelia J., et al.
Publicado: (2020)