Cargando…

Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations

Platelet adhesion and activation are essential initial processes of arterial and microvascular hemostasis, where high hydrodynamic forces from the bloodflow impede coagulation. The process relies on von Willebrand factor (VWF)—a linear multimeric protein of blood plasma plays a pivotal role in mecha...

Descripción completa

Detalles Bibliográficos
Autores principales: Belyaev, Aleksey V., Kushchenko, Yulia K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838538/
https://www.ncbi.nlm.nih.gov/pubmed/36627458
http://dx.doi.org/10.1007/s10237-022-01681-3
Descripción
Sumario:Platelet adhesion and activation are essential initial processes of arterial and microvascular hemostasis, where high hydrodynamic forces from the bloodflow impede coagulation. The process relies on von Willebrand factor (VWF)—a linear multimeric protein of blood plasma plays a pivotal role in mechanochemical regulation of shear-induced platelet aggregation (SIPA). Adhesive interactions between VWF and glycoprotein receptors GPIb are crucial for platelet recruitment under high shear stress in fluid. Recent advances in experimental studies revealed that mechanical tension on the extracellular part of GPIb may trigger a cascade of biochemical reactions in platelets leading to activation of integrins [Formula: see text] (also known as GPIIb/IIIa) and strengthening of the adhesion. The present paper is aimed at investigation of this process by three-dimensional computer simulations of platelet adhesion to surface-grafted VWF multimers in pressure-driven flow of platelet-rich plasma. The simulations demonstrate that GPIb-mediated mechanotransduction is a feasible way of platelet activation and stabilization of platelet aggregates under high shear stress. Quantitative understanding of mechanochemical processes involved in SIPA would potentially promote the discovery of new anti-platelet medication and the development of multiscale numerical models of platelet thrombosis and hemostasis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10237-022-01681-3.