Cargando…

Mycobacterial helicase Lhr abets resistance to DNA crosslinking agents mitomycin C and cisplatin

Mycobacterium smegmatis Lhr exemplifies a novel clade of helicases composed of an N-terminal ATPase/helicase domain (Lhr-Core) and a large C-terminal domain (Lhr-CTD) that nucleates a unique homo-tetrameric quaternary structure. Expression of Lhr, and its operonic neighbor Nei2, is induced in mycoba...

Descripción completa

Detalles Bibliográficos
Autores principales: Warren, Garrett M, Ejaz, Anam, Fay, Allison, Glickman, Michael S, Shuman, Stewart
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841417/
https://www.ncbi.nlm.nih.gov/pubmed/36610794
http://dx.doi.org/10.1093/nar/gkac1222
Descripción
Sumario:Mycobacterium smegmatis Lhr exemplifies a novel clade of helicases composed of an N-terminal ATPase/helicase domain (Lhr-Core) and a large C-terminal domain (Lhr-CTD) that nucleates a unique homo-tetrameric quaternary structure. Expression of Lhr, and its operonic neighbor Nei2, is induced in mycobacteria exposed to mitomycin C (MMC). Here we report that lhr deletion sensitizes M. smegmatis to killing by DNA crosslinkers MMC and cisplatin but not to killing by monoadduct-forming alkylating agent methyl methanesulfonate or UV irradiation. Testing complementation of MMC and cisplatin sensitivity by expression of Lhr mutants in Δlhr cells established that: (i) Lhr-CTD is essential for DNA repair activity, such that Lhr-Core does not suffice; (ii) ATPase-defective mutant D170A/E171A fails to complement; (iii) ATPase-active, helicase-defective mutant W597A fails to complement and (iv) alanine mutations at the CTD–CTD interface that interdict homo-tetramer formation result in failure to complement. Our results instate Lhr's ATP-driven motor as an agent of inter-strand crosslink repair in vivo, contingent on Lhr's tetrameric quaternary structure. We characterize M. smegmatis Nei2 as a monomeric enzyme with AP β-lyase activity on single-stranded DNA. Counter to previous reports, we find Nei2 is inactive as a lyase at a THF abasic site and has feeble uracil glycosylase activity.