Cargando…

Functional properties of glutelin from Camellia oleifera seed cake: Improvement by alkali-assisted phosphorylation through changes in protein structure

To explore the effect and its mechanism of alkali-assisted phosphorylation on the functional properties of Camellia Oleifera seeds cake glutelin (CSCG), CSCG was treated with different concentration of sodium trimetaphosphate (STMP, 1.0, 2.0, 3.0, 4.0, and 5%, w/v) in different pH environment (3.0,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Ningxiang, Wang, Yijue, Shao, Shengxin, Li, Jie, Li, Mengren, Zhu, Lizhong, Ye, Qin, Huan, Weiwei, Meng, Xianghe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842863/
https://www.ncbi.nlm.nih.gov/pubmed/36660303
http://dx.doi.org/10.1016/j.crfs.2023.100438
Descripción
Sumario:To explore the effect and its mechanism of alkali-assisted phosphorylation on the functional properties of Camellia Oleifera seeds cake glutelin (CSCG), CSCG was treated with different concentration of sodium trimetaphosphate (STMP, 1.0, 2.0, 3.0, 4.0, and 5%, w/v) in different pH environment (3.0, 5.0, 7.0, 9.0, and 11.0). The results showed that alkali assist improved the phosphorylation degree of CSCG, and the optimum pH value is 9.0. FT-IR and XPS confirmed the successful modification of phosphate groups on CSCG through covalent interaction. Alkali-assisted phosphorylation decreased the particle size and increased electronegativity of CSCG, as well as changed in its surface hydrophobicity, crystallinity, and intrinsic fluorescence. All these changes of protein structure triggered by alkali-assisted phosphorylation led to the improvement of water solubility, water/oil absorption capacity, emulsifying ability, foamability, and in vitro digestibility of CSCG. This work could provide a theoretical basis for industrial production of CSCG with excellent functional properties.