Cargando…
HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks
Chromosome conformation capture (3 C) is a method of measuring chromosome topology in terms of loci interaction. The Hi-C method is a derivative of 3 C that allows for genome-wide quantification of chromosome interaction. From such interaction data, it is possible to infer the three-dimensional (3D)...
Autores principales: | Hovenga, Van, Kalita, Jugal, Oluwadare, Oluwatosin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842867/ https://www.ncbi.nlm.nih.gov/pubmed/36698967 http://dx.doi.org/10.1016/j.csbj.2022.12.051 |
Ejemplares similares
-
CBCR: A Curriculum Based Strategy For Chromosome Reconstruction
por: Hovenga, Van, et al.
Publicado: (2021) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
CNNSplice: Robust models for splice site prediction using convolutional neural networks
por: Akpokiro, Victor, et al.
Publicado: (2023) -
An Overview of Methods for Reconstructing 3-D Chromosome and Genome Structures from Hi-C Data
por: Oluwadare, Oluwatosin, et al.
Publicado: (2019)