Cargando…
BMX controls 3βHSD1 and sex steroid biosynthesis in cancer
Prostate cancer is highly dependent on androgens and the androgen receptor (AR). Hormonal therapies inhibit gonadal testosterone production, block extragonadal androgen biosynthesis, or directly antagonize AR. Resistance to medical castration occurs as castration-resistant prostate cancer (CRPC) and...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843047/ https://www.ncbi.nlm.nih.gov/pubmed/36647826 http://dx.doi.org/10.1172/JCI163498 |
Sumario: | Prostate cancer is highly dependent on androgens and the androgen receptor (AR). Hormonal therapies inhibit gonadal testosterone production, block extragonadal androgen biosynthesis, or directly antagonize AR. Resistance to medical castration occurs as castration-resistant prostate cancer (CRPC) and is driven by reactivation of the androgen-AR axis. 3β-hydroxysteroid dehydrogenase-1 (3βHSD1) serves as the rate-limiting step for potent androgen synthesis from extragonadal precursors, thereby stimulating CRPC. Genetic evidence in men demonstrates the role of 3βHSD1 in driving CRPC. In postmenopausal women, 3βHSD1 is required for synthesis of aromatase substrates and plays an essential role in breast cancer. Therefore, 3βHSD1 lies at a critical junction for the synthesis of androgens and estrogens, and this metabolic flux is regulated through germline-inherited mechanisms. We show that phosphorylation of tyrosine 344 (Y344) occurs and is required for 3βHSD1 cellular activity and generation of Δ(4), 3-keto-substrates of 5α-reductase and aromatase, including in patient tissues. BMX directly interacts with 3βHSD1 and is necessary for enzyme phosphorylation and androgen biosynthesis. In vivo blockade of 3βHSD1 Y344 phosphorylation inhibits CRPC. These findings identify what we believe to be new hormonal therapy pharmacologic vulnerabilities for sex-steroid dependent cancers. |
---|