Cargando…

M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression

BACKGROUND: Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. METHODS: M2 macrophages...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Li, Zhao, Dongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843320/
https://www.ncbi.nlm.nih.gov/pubmed/36660616
http://dx.doi.org/10.21037/atm-22-6109
Descripción
Sumario:BACKGROUND: Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. METHODS: M2 macrophages were isolated and induced from blood donated by healthy donors. M2 macrophages were transfected with or without miR-145-5p. Exosomes derived from M2 macrophages were isolated and identified by flow cytometry, nanoparticle tracking analysis, and transmission electron microscopy (TEM). AC16 cells were used to establish an H/R model, and cell activity was detected using a Cell Counting Kit 8 (CCK-8). Western blot was used to detect the expression of gasdermin D (GSDMD), nucleotide-binding domain-like receptor protein 3 (NLRP3), and caspase-1 in the H/R-induced AC16 cells to evaluate pyroptosis. Immunofluorescence staining was used to detect the positive rates of PKH26 and caspase-1. Combined with database prediction, dual luciferase reporter assays were used to validate toll-like receptor 4 (TLR4) as a downstream target molecule of miR-145-5p. A real-time quantitative polymerase chain reaction (RT-qPCR) analysis and western blot were used to detect the expression of TLR4 in the AC16 cells. RESULTS: Flow cytometry, western blot, nanoparticle tracking and TEM results confirmed the successful isolation of M2 macrophage-derived exosomes. CCK-8 results showed M2 macrophage-derived exosomes decreased the viability of the H/R-induced cells. Western blot results showed the expressions of GSDMD, caspase-1, and NLRP3 were significantly downregulated in the H/R group. Moreover, CCK-8 results showed the M2 macrophage-derived exosome miR-145-5p significantly ameliorated H/R-induced AC16 cellular activity. Western blot results confirmed the expressions of GSDMD, NLRP3, and caspase-1 were significantly downregulated in the macrophage-derived exosome miR-145-5p group compared to the M2 macrophage-derived exosome NC (normal control) group. Immunofluorescence staining results displayed the same trend in terms of the caspase-1 positivity rate. Further, we demonstrated overexpression of TLR4 partially reversed the protective effect of M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Additionally, overexpression of TLR4 reversed the protein expression associated with pyroptosis in M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. CONCLUSIONS: Our study indicated M2 macrophage-derived exosomes carrying miR-145-5p inhibited H/R-induced cardiomyocyte pyroptosis by downregulating the expression of TLR4.