Cargando…
M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression
BACKGROUND: Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. METHODS: M2 macrophages...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843320/ https://www.ncbi.nlm.nih.gov/pubmed/36660616 http://dx.doi.org/10.21037/atm-22-6109 |
_version_ | 1784870366479384576 |
---|---|
author | Wei, Li Zhao, Dongsheng |
author_facet | Wei, Li Zhao, Dongsheng |
author_sort | Wei, Li |
collection | PubMed |
description | BACKGROUND: Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. METHODS: M2 macrophages were isolated and induced from blood donated by healthy donors. M2 macrophages were transfected with or without miR-145-5p. Exosomes derived from M2 macrophages were isolated and identified by flow cytometry, nanoparticle tracking analysis, and transmission electron microscopy (TEM). AC16 cells were used to establish an H/R model, and cell activity was detected using a Cell Counting Kit 8 (CCK-8). Western blot was used to detect the expression of gasdermin D (GSDMD), nucleotide-binding domain-like receptor protein 3 (NLRP3), and caspase-1 in the H/R-induced AC16 cells to evaluate pyroptosis. Immunofluorescence staining was used to detect the positive rates of PKH26 and caspase-1. Combined with database prediction, dual luciferase reporter assays were used to validate toll-like receptor 4 (TLR4) as a downstream target molecule of miR-145-5p. A real-time quantitative polymerase chain reaction (RT-qPCR) analysis and western blot were used to detect the expression of TLR4 in the AC16 cells. RESULTS: Flow cytometry, western blot, nanoparticle tracking and TEM results confirmed the successful isolation of M2 macrophage-derived exosomes. CCK-8 results showed M2 macrophage-derived exosomes decreased the viability of the H/R-induced cells. Western blot results showed the expressions of GSDMD, caspase-1, and NLRP3 were significantly downregulated in the H/R group. Moreover, CCK-8 results showed the M2 macrophage-derived exosome miR-145-5p significantly ameliorated H/R-induced AC16 cellular activity. Western blot results confirmed the expressions of GSDMD, NLRP3, and caspase-1 were significantly downregulated in the macrophage-derived exosome miR-145-5p group compared to the M2 macrophage-derived exosome NC (normal control) group. Immunofluorescence staining results displayed the same trend in terms of the caspase-1 positivity rate. Further, we demonstrated overexpression of TLR4 partially reversed the protective effect of M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Additionally, overexpression of TLR4 reversed the protein expression associated with pyroptosis in M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. CONCLUSIONS: Our study indicated M2 macrophage-derived exosomes carrying miR-145-5p inhibited H/R-induced cardiomyocyte pyroptosis by downregulating the expression of TLR4. |
format | Online Article Text |
id | pubmed-9843320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-98433202023-01-18 M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression Wei, Li Zhao, Dongsheng Ann Transl Med Original Article BACKGROUND: Exosomes carrying micro ribonucleic acids (miRNAs) protect against myocardial ischemic injury. In the study, we sought to investigate the protective effect mechanism of M2 macrophage-derived exosome miR-145-5p in hypoxia-reoxygenation (H/R)-induced cardiomyocytes. METHODS: M2 macrophages were isolated and induced from blood donated by healthy donors. M2 macrophages were transfected with or without miR-145-5p. Exosomes derived from M2 macrophages were isolated and identified by flow cytometry, nanoparticle tracking analysis, and transmission electron microscopy (TEM). AC16 cells were used to establish an H/R model, and cell activity was detected using a Cell Counting Kit 8 (CCK-8). Western blot was used to detect the expression of gasdermin D (GSDMD), nucleotide-binding domain-like receptor protein 3 (NLRP3), and caspase-1 in the H/R-induced AC16 cells to evaluate pyroptosis. Immunofluorescence staining was used to detect the positive rates of PKH26 and caspase-1. Combined with database prediction, dual luciferase reporter assays were used to validate toll-like receptor 4 (TLR4) as a downstream target molecule of miR-145-5p. A real-time quantitative polymerase chain reaction (RT-qPCR) analysis and western blot were used to detect the expression of TLR4 in the AC16 cells. RESULTS: Flow cytometry, western blot, nanoparticle tracking and TEM results confirmed the successful isolation of M2 macrophage-derived exosomes. CCK-8 results showed M2 macrophage-derived exosomes decreased the viability of the H/R-induced cells. Western blot results showed the expressions of GSDMD, caspase-1, and NLRP3 were significantly downregulated in the H/R group. Moreover, CCK-8 results showed the M2 macrophage-derived exosome miR-145-5p significantly ameliorated H/R-induced AC16 cellular activity. Western blot results confirmed the expressions of GSDMD, NLRP3, and caspase-1 were significantly downregulated in the macrophage-derived exosome miR-145-5p group compared to the M2 macrophage-derived exosome NC (normal control) group. Immunofluorescence staining results displayed the same trend in terms of the caspase-1 positivity rate. Further, we demonstrated overexpression of TLR4 partially reversed the protective effect of M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. Additionally, overexpression of TLR4 reversed the protein expression associated with pyroptosis in M2 macrophage-derived exosome miR-145-5p in the H/R-induced AC16 cells. CONCLUSIONS: Our study indicated M2 macrophage-derived exosomes carrying miR-145-5p inhibited H/R-induced cardiomyocyte pyroptosis by downregulating the expression of TLR4. AME Publishing Company 2022-12 /pmc/articles/PMC9843320/ /pubmed/36660616 http://dx.doi.org/10.21037/atm-22-6109 Text en 2022 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Wei, Li Zhao, Dongsheng M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression |
title | M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression |
title_full | M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression |
title_fullStr | M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression |
title_full_unstemmed | M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression |
title_short | M2 macrophage-derived exosomal miR-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting TLR4 expression |
title_sort | m2 macrophage-derived exosomal mir-145-5p protects against the hypoxia/reoxygenation-induced pyroptosis of cardiomyocytes by inhibiting tlr4 expression |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843320/ https://www.ncbi.nlm.nih.gov/pubmed/36660616 http://dx.doi.org/10.21037/atm-22-6109 |
work_keys_str_mv | AT weili m2macrophagederivedexosomalmir1455pprotectsagainstthehypoxiareoxygenationinducedpyroptosisofcardiomyocytesbyinhibitingtlr4expression AT zhaodongsheng m2macrophagederivedexosomalmir1455pprotectsagainstthehypoxiareoxygenationinducedpyroptosisofcardiomyocytesbyinhibitingtlr4expression |