Cargando…
Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning
Drug combinations could trigger pharmacological therapeutic effects (TEs) and adverse effects (AEs). Many computational methods have been developed to predict TEs, e.g. the therapeutic synergy scores of anti-cancer drug combinations, or AEs from drug–drug interactions. However, most of the methods t...
Autores principales: | Yue, Yang, Liu, Yongxuan, Hao, Luoying, Lei, Huangshu, He, Shan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851313/ https://www.ncbi.nlm.nih.gov/pubmed/36562724 http://dx.doi.org/10.1093/bib/bbac564 |
Ejemplares similares
-
MpbPPI: a multi-task pre-training-based equivariant approach for the prediction of the effect of amino acid mutations on protein–protein interactions
por: Yue, Yang, et al.
Publicado: (2023) -
A chronotherapeutics-applicable multi-target therapeutics based on AI: Example of therapeutic hypothermia
por: Liu, Fei, et al.
Publicado: (2022) -
MetaLogo: a heterogeneity-aware sequence logo generator and aligner
por: Chen, Yaowen, et al.
Publicado: (2022) -
HNetGO: protein function prediction via heterogeneous network transformer
por: Zhang, Xiaoshuai, et al.
Publicado: (2023) -
Mutational signature assignment heterogeneity is widespread and can be addressed by ensemble approaches
por: Wu, Andy J, et al.
Publicado: (2023)