Cargando…
Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity
T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoire composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To determine signatures associat...
Autores principales: | Park, Jonathan J., Lee, Kyoung A V., Lam, Stanley Z., Moon, Katherine S., Fang, Zhenhao, Chen, Sidi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853487/ https://www.ncbi.nlm.nih.gov/pubmed/36670287 http://dx.doi.org/10.1038/s42003-023-04447-4 |
Ejemplares similares
-
Machine Learning Detects Anti-DENV Signatures in Antibody Repertoire Sequences
por: Horst, Alexander, et al.
Publicado: (2021) -
T cell receptor β repertoires in patients with COVID-19 reveal disease severity signatures
por: Xu, Jing, et al.
Publicado: (2023) -
Machine Learning Approaches to TCR Repertoire Analysis
por: Katayama, Yotaro, et al.
Publicado: (2022) -
Signatures of B Cell Receptor Repertoire Following Pneumocystis Infection
por: Sun, Han, et al.
Publicado: (2021) -
Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification
por: Kanduri, Chakravarthi, et al.
Publicado: (2022)