Cargando…
Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury
Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854665/ https://www.ncbi.nlm.nih.gov/pubmed/36671020 http://dx.doi.org/10.3390/antiox12010158 |
_version_ | 1784873177586860032 |
---|---|
author | Cen, Yelei Lou, Guohua Qi, Jinjin Li, Minwei Zheng, Min Liu, Yanning |
author_facet | Cen, Yelei Lou, Guohua Qi, Jinjin Li, Minwei Zheng, Min Liu, Yanning |
author_sort | Cen, Yelei |
collection | PubMed |
description | Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury. |
format | Online Article Text |
id | pubmed-9854665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98546652023-01-21 Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury Cen, Yelei Lou, Guohua Qi, Jinjin Li, Minwei Zheng, Min Liu, Yanning Antioxidants (Basel) Article Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury. MDPI 2023-01-09 /pmc/articles/PMC9854665/ /pubmed/36671020 http://dx.doi.org/10.3390/antiox12010158 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cen, Yelei Lou, Guohua Qi, Jinjin Li, Minwei Zheng, Min Liu, Yanning Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury |
title | Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury |
title_full | Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury |
title_fullStr | Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury |
title_full_unstemmed | Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury |
title_short | Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury |
title_sort | adipose-derived mesenchymal stem cells inhibit jnk-mediated mitochondrial retrograde pathway to alleviate acetaminophen-induced liver injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9854665/ https://www.ncbi.nlm.nih.gov/pubmed/36671020 http://dx.doi.org/10.3390/antiox12010158 |
work_keys_str_mv | AT cenyelei adiposederivedmesenchymalstemcellsinhibitjnkmediatedmitochondrialretrogradepathwaytoalleviateacetaminopheninducedliverinjury AT louguohua adiposederivedmesenchymalstemcellsinhibitjnkmediatedmitochondrialretrogradepathwaytoalleviateacetaminopheninducedliverinjury AT qijinjin adiposederivedmesenchymalstemcellsinhibitjnkmediatedmitochondrialretrogradepathwaytoalleviateacetaminopheninducedliverinjury AT liminwei adiposederivedmesenchymalstemcellsinhibitjnkmediatedmitochondrialretrogradepathwaytoalleviateacetaminopheninducedliverinjury AT zhengmin adiposederivedmesenchymalstemcellsinhibitjnkmediatedmitochondrialretrogradepathwaytoalleviateacetaminopheninducedliverinjury AT liuyanning adiposederivedmesenchymalstemcellsinhibitjnkmediatedmitochondrialretrogradepathwaytoalleviateacetaminopheninducedliverinjury |