Cargando…
Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction
The seafood industry is often left out of the food waste discussion, but this sector is no exception, as it generates large amounts of various by-products. This study aimed to explore the potential of the microwave-assisted extraction (MAE) technique to obtain high-quality oil from fish by-products....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855643/ https://www.ncbi.nlm.nih.gov/pubmed/36671387 http://dx.doi.org/10.3390/biom13010001 |
_version_ | 1784873427051479040 |
---|---|
author | Pinela, José de la Fuente, Beatriz Rodrigues, Matilde Pires, Tânia C. S. P. Mandim, Filipa Almeida, André Dias, Maria Inês Caleja, Cristina Barros, Lillian |
author_facet | Pinela, José de la Fuente, Beatriz Rodrigues, Matilde Pires, Tânia C. S. P. Mandim, Filipa Almeida, André Dias, Maria Inês Caleja, Cristina Barros, Lillian |
author_sort | Pinela, José |
collection | PubMed |
description | The seafood industry is often left out of the food waste discussion, but this sector is no exception, as it generates large amounts of various by-products. This study aimed to explore the potential of the microwave-assisted extraction (MAE) technique to obtain high-quality oil from fish by-products. The independent variables, which were time (1–30 min), microwave power (50–1000 W), and solid/liquid ratio (70–120 g/L) were combined in a 20-run experimental design coupled with the response surface methodology (RSM) for process optimization. The obtained oil yield values were fitted to a quadratic equation to build the theoretical models, which were statistically validated based on statistical criteria and used to predict the optimal MAE condition. The oil yields were significantly affected by the three independent variables through linear, quadratic, and/or interactive effects. Compared to a conventional Soxhlet extraction (SE), the optimal MAE conditions allowed between 60 and 100% of oil to be recovered in less than 19 min and with less solvent consumption. The fatty acid profiles of the oils obtained through SE and optimized MAE were characterized by gas chromatography with flame ionizing detection (GC-FID) after a derivatization process. These oils were constituted mainly of health, beneficial unsaturated fatty acids, such as oleic, docosahexaenoic (DHA), linoleic, and eicosapentaenoic (EPA) acids, which were not affected (p > 0.05) by the extraction methods. Interestingly, the oils obtained through MAE showed the best microbial growth inhibition results may have been due to thermolabile compounds, preserved via this unconventional non-thermal method. The oils also exhibited anti-inflammatory effects via nitric oxide production inhibition and cytotoxic potential especially, against breast and gastric adenocarcinoma cells. However, the threshold of toxicity should be further investigated. Overall, this work emerges as a future-oriented approach to upcycling fish by-products into high-quality oils that can be used in the formulation of pet food and other products. |
format | Online Article Text |
id | pubmed-9855643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98556432023-01-21 Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction Pinela, José de la Fuente, Beatriz Rodrigues, Matilde Pires, Tânia C. S. P. Mandim, Filipa Almeida, André Dias, Maria Inês Caleja, Cristina Barros, Lillian Biomolecules Article The seafood industry is often left out of the food waste discussion, but this sector is no exception, as it generates large amounts of various by-products. This study aimed to explore the potential of the microwave-assisted extraction (MAE) technique to obtain high-quality oil from fish by-products. The independent variables, which were time (1–30 min), microwave power (50–1000 W), and solid/liquid ratio (70–120 g/L) were combined in a 20-run experimental design coupled with the response surface methodology (RSM) for process optimization. The obtained oil yield values were fitted to a quadratic equation to build the theoretical models, which were statistically validated based on statistical criteria and used to predict the optimal MAE condition. The oil yields were significantly affected by the three independent variables through linear, quadratic, and/or interactive effects. Compared to a conventional Soxhlet extraction (SE), the optimal MAE conditions allowed between 60 and 100% of oil to be recovered in less than 19 min and with less solvent consumption. The fatty acid profiles of the oils obtained through SE and optimized MAE were characterized by gas chromatography with flame ionizing detection (GC-FID) after a derivatization process. These oils were constituted mainly of health, beneficial unsaturated fatty acids, such as oleic, docosahexaenoic (DHA), linoleic, and eicosapentaenoic (EPA) acids, which were not affected (p > 0.05) by the extraction methods. Interestingly, the oils obtained through MAE showed the best microbial growth inhibition results may have been due to thermolabile compounds, preserved via this unconventional non-thermal method. The oils also exhibited anti-inflammatory effects via nitric oxide production inhibition and cytotoxic potential especially, against breast and gastric adenocarcinoma cells. However, the threshold of toxicity should be further investigated. Overall, this work emerges as a future-oriented approach to upcycling fish by-products into high-quality oils that can be used in the formulation of pet food and other products. MDPI 2022-12-20 /pmc/articles/PMC9855643/ /pubmed/36671387 http://dx.doi.org/10.3390/biom13010001 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pinela, José de la Fuente, Beatriz Rodrigues, Matilde Pires, Tânia C. S. P. Mandim, Filipa Almeida, André Dias, Maria Inês Caleja, Cristina Barros, Lillian Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction |
title | Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction |
title_full | Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction |
title_fullStr | Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction |
title_full_unstemmed | Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction |
title_short | Upcycling Fish By-Products into Bioactive Fish Oil: The Suitability of Microwave-Assisted Extraction |
title_sort | upcycling fish by-products into bioactive fish oil: the suitability of microwave-assisted extraction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855643/ https://www.ncbi.nlm.nih.gov/pubmed/36671387 http://dx.doi.org/10.3390/biom13010001 |
work_keys_str_mv | AT pinelajose upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT delafuentebeatriz upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT rodriguesmatilde upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT pirestaniacsp upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT mandimfilipa upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT almeidaandre upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT diasmariaines upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT calejacristina upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction AT barroslillian upcyclingfishbyproductsintobioactivefishoilthesuitabilityofmicrowaveassistedextraction |