Cargando…

Is Glial Dysfunction the Key Pathogenesis of LRRK2-Linked Parkinson’s Disease?

Leucine rich-repeat kinase 2 (LRRK2) is the most well-known etiologic gene for familial Parkinson’s disease (PD). Its gene product is a large kinase with multiple functional domains that phosphorylates a subset of Rab small GTPases. However, studies of autopsy cases with LRRK2 mutations indicate a v...

Descripción completa

Detalles Bibliográficos
Autores principales: Iseki, Tatou, Imai, Yuzuru, Hattori, Nobutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9856048/
https://www.ncbi.nlm.nih.gov/pubmed/36671564
http://dx.doi.org/10.3390/biom13010178
Descripción
Sumario:Leucine rich-repeat kinase 2 (LRRK2) is the most well-known etiologic gene for familial Parkinson’s disease (PD). Its gene product is a large kinase with multiple functional domains that phosphorylates a subset of Rab small GTPases. However, studies of autopsy cases with LRRK2 mutations indicate a varied pathology, and the molecular functions of LRRK2 and its relationship to PD pathogenesis are largely unknown. Recently, non-autonomous neurodegeneration associated with glial cell dysfunction has attracted attention as a possible mechanism of dopaminergic neurodegeneration. Molecular studies of LRRK2 in astrocytes and microglia have also suggested that LRRK2 is involved in the regulation of lysosomal and other organelle dynamics and inflammation. In this review, we describe the proposed functions of LRRK2 in glial cells and discuss its involvement in the pathomechanisms of PD.