Cargando…
Shallow Whole-Genome Sequencing of Cell-Free DNA (cfDNA) Detects Epithelial Ovarian Cancer and Predicts Patient Prognosis
SIMPLE SUMMARY: Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer (EOC) remains a fatal disease. Using shallow whole-genome sequencing (WGS), we identified copy number variations (CNVs). In addition, we quantified chromosomal instability using genome-wide instability an...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857189/ https://www.ncbi.nlm.nih.gov/pubmed/36672479 http://dx.doi.org/10.3390/cancers15020530 |
Sumario: | SIMPLE SUMMARY: Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer (EOC) remains a fatal disease. Using shallow whole-genome sequencing (WGS), we identified copy number variations (CNVs). In addition, we quantified chromosomal instability using genome-wide instability and found that it could detect newly diagnosed EOC. In addition, the data showed RAB25 amplification (alone or with CA125), and disease-free survival and overall survival. Our data demonstrated that cfDNA, detected by shallow WGS, represents a potential tool for diagnosing EOC and predicting its prognosis. ABSTRACT: Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer (EOC) remains a fatal disease. Using shallow whole-genome sequencing of plasma cell-free DNA (cfDNA), we investigated biomarkers that could detect EOC and predict survival. Plasma cfDNA from 40 EOC patients and 20 healthy subjects were analyzed by shallow whole-genome sequencing (WGS) to identify copy number variations (CNVs) and determine the Z-scores of genes. In addition, we also calculated the genome-wide scores (Gi scores) to quantify chromosomal instability. We found that the Gi scores could distinguish EOC patients from healthy subjects and identify various EOC histological subtypes (e.g., high-grade serous carcinoma). In addition, we characterized EOC CNVs and demonstrated a relationship between RAB25 amplification (alone or with CA125), and disease-free survival and overall survival. This study identified RAB25 amplification as a predictor of EOC patient survival. Moreover, we showed that Gi scores could detect EOC. These data demonstrated that cfDNA, detected by shallow WGS, represented a potential tool for diagnosing EOC and predicting its prognosis. |
---|