Cargando…
Unsupervised Anomaly Detection for Intermittent Sequences Based on Multi-Granularity Abnormal Pattern Mining
In the actual maintenance of manufacturing enterprises, abnormal changes in after-sale parts demand data often make the inventory strategies unreasonable. Due to the intermittent and small-scale characteristics of demand sequences, it is difficult to accurately identify the anomalies in such sequenc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857523/ https://www.ncbi.nlm.nih.gov/pubmed/36673264 http://dx.doi.org/10.3390/e25010123 |