Cargando…
Unsupervised Anomaly Detection for Intermittent Sequences Based on Multi-Granularity Abnormal Pattern Mining
In the actual maintenance of manufacturing enterprises, abnormal changes in after-sale parts demand data often make the inventory strategies unreasonable. Due to the intermittent and small-scale characteristics of demand sequences, it is difficult to accurately identify the anomalies in such sequenc...
Autores principales: | Fan, Lilin, Zhang, Jiahu, Mao, Wentao, Cao, Fukang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857523/ https://www.ncbi.nlm.nih.gov/pubmed/36673264 http://dx.doi.org/10.3390/e25010123 |
Ejemplares similares
-
Spare Parts Demand Forecasting Method Based on Intermittent Feature Adaptation
por: Fan, Lilin, et al.
Publicado: (2023) -
Anomaly detection in genomic catalogues using unsupervised multi-view autoencoders
por: Ferré, Quentin, et al.
Publicado: (2021) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018) -
Granular-relational data mining: how to mine relational data in the paradigm of granular computing ?
por: Hońko, Piotr
Publicado: (2017) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021)