Cargando…
A multi-view latent variable model reveals cellular heterogeneity in complex tissues for paired multimodal single-cell data
MOTIVATION: Single-cell multimodal assays allow us to simultaneously measure two different molecular features of the same cell, enabling new insights into cellular heterogeneity, cell development and diseases. However, most existing methods suffer from inaccurate dimensionality reduction for the joi...
Autores principales: | Wang, Yuwei, Lian, Bin, Zhang, Haohui, Zhong, Yuanke, He, Jie, Wu, Fashuai, Reinert, Knut, Shang, Xuequn, Yang, Hui, Hu, Jialu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857983/ https://www.ncbi.nlm.nih.gov/pubmed/36622018 http://dx.doi.org/10.1093/bioinformatics/btad005 |
Ejemplares similares
-
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
por: Zheng, Yan, et al.
Publicado: (2021) -
Twadn: an efficient alignment algorithm based on time warping for pairwise dynamic networks
por: Zhong, Yuanke, et al.
Publicado: (2020) -
Decomposing the heterogeneity of depression at the person-, symptom-, and time-level: latent variable models versus multimode principal component analysis
por: de Vos, Stijn, et al.
Publicado: (2015) -
MD-SVM: a novel SVM-based algorithm for the motif discovery of transcription factor binding sites
por: Hu, Jialu, et al.
Publicado: (2019) -
Detection of Network Motif Based on a Novel Graph Canonization Algorithm from Transcriptional Regulation Networks
por: Hu, Jialu, et al.
Publicado: (2017)