Cargando…

Sarcomere length affects Ca(2+) sensitivity of contraction in ischemic but not non-ischemic myocardium

In healthy hearts, myofilaments become more sensitive to Ca(2+) as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank–Starling mechanism. Few studies have measured length-dependent activation in the myocardium fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanner, Bertrand C.W., Awinda, Peter O., Agonias, Keinan B., Attili, Seetharamaiah, Blair, Cheavar A., Thompson, Mindy S., Walker, Lori A., Kampourakis, Thomas, Campbell, Kenneth S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859763/
https://www.ncbi.nlm.nih.gov/pubmed/36633584
http://dx.doi.org/10.1085/jgp.202213200
Descripción
Sumario:In healthy hearts, myofilaments become more sensitive to Ca(2+) as the myocardium is stretched. This effect is known as length-dependent activation and is an important cellular-level component of the Frank–Starling mechanism. Few studies have measured length-dependent activation in the myocardium from failing human hearts. We investigated whether ischemic and non-ischemic heart failure results in different length-dependent activation responses at physiological temperature (37°C). Myocardial strips from the left ventricular free wall were chemically permeabilized and Ca(2+)-activated at sarcomere lengths (SLs) of 1.9 and 2.3 µm. Data were acquired from 12 hearts that were explanted from patients receiving cardiac transplants; 6 had ischemic heart failure and 6 had non-ischemic heart failure. Another 6 hearts were obtained from organ donors. Maximal Ca(2+)-activated force increased at longer SL for all groups. Ca(2+) sensitivity increased with SL in samples from donors (P < 0.001) and patients with ischemic heart failure (P = 0.003) but did not change with SL in samples from patients with non-ischemic heart failure. Compared with donors, troponin I phosphorylation decreased in ischemic samples and even more so in non-ischemic samples; cardiac myosin binding protein-C (cMyBP-C) phosphorylation also decreased with heart failure. These findings support the idea that troponin I and cMyBP-C phosphorylation promote length-dependent activation and show that length-dependent activation of contraction is blunted, yet extant, in the myocardium from patients with ischemic heart failure and further reduced in the myocardium from patients with non-ischemic heart failure. Patients who have a non-ischemic disease may exhibit a diminished contractile response to increased ventricular filling.